Have a personal or library account? Click to login
Application of Experimental Method for the Delay Estimation in Cellular Mobile Networks Cover

Application of Experimental Method for the Delay Estimation in Cellular Mobile Networks

Open Access
|Apr 2025

References

  1. 3GPP. (2022) 3GPP TS 22.125 Uncrewed Aerial System (UAS) support in 3GPP. Sophia Antipolis Valbonne: 3GPP, 16. Available at: http://3gpp.org/ftp/Specs/html-info/24.301.htm (Accessed 10 Jan 2024).
  2. Abdesslem, F. B., Abrahamsson, H. and Ahlgren, B. (2018) Measuring mobile network multi-access for time-critical c-its applications. In: TMA 2018 - Proceedings of the 2nd Network Traffic Measurement and Analysis Conference, Vienna, October 2018. IEEE: 1-8. doi: 10.23919/TMA.2018.8506551.
  3. GSMA. (2020) LTE aerial profile. Global UTM Association, 1–29. Available at: https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2020/11/ACJA-WT3-LTE-Aerial-Profile_v1.00-2.pdf (Accessed 09 Dec 2024).
  4. Ahmed, A.H., Hicks, S., Riegler, M.A., Elmokashfi, A. (2021) Predicting high delays in mobile broadband networks. IEEE Access, 9, 168999–169013. doi: 10.1109/ACCESS.2021.3138695.
  5. Akbarzadeh, O. and Attar, H. (2022) Investigating the effect of latency in a 5G infrastructure for applications requiring ultra-low latency. In: Proceedings of the 1st International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Zarqa, March 2023. IEEE, 1-5. doi: 10.1109/EICEEAI56378.2022.10050470.
  6. Alay, Ö., Lutu, A., García, R., Peón-Quirós, M., Mancuso, V., Hirsch, Th., Dely, T., Werme, J., Evensen, K., Hansen, A., Alfredsson, S., Karlsson, J., Brunstrom, A., Safari Khatouni, A., Mellia, M., Ajmone Marsan, M., Monno, R. and Lonsethagen, H. (2016) MONROE, a distributed platform to measure and assess mobile broadband networks: demo. In: Proceedings of the Tenth ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characterization WiNTECH ‘16, New York. Association for Computing Machinery, 85–86. https://doi.org/10.1145/2980159.2980172.
  7. Albaladejo, M.B., Leith, D.J. and Manzoni, P. (2016) Measurement-based modelling of LTE performance in Dublin city. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Valencia, December 2016. IEEE, 1-6. doi: 10.1109/PIMRC.2016.7794854.
  8. Arshad, T. et al. (2016) Performance Evaluation of Mobile Broadband Cellular Networks in Pakistan. In: 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops). IEEE, 104–111. Available at: https://doi.org/10.1109/LCN.2016.035.
  9. Azari, M.M., Rosas, F. and Pollin, S. (2019) Cellular connectivity for UAVs: Network modeling, performance analysis, and design guidelines. IEEE Transactions on Wireless Communications, 18(7), 3366-3381. doi: 10.1109/TWC.2019.2910112
  10. Bag, G., Johansson, M., Lednicki, L., Neander, J., Eriksson, L., Bogati, R. (2018) Performance evaluation of IEC 61850-90-5 over a latency optimized 3GPP LTE network. In: Proceedings of 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, December 2018. IEEE, 1-7. doi: 10.1109/SmartGridComm.2018.8587459.
  11. Van Der Bergh, B., Chiumento, A. and Pollin, S. (2016) LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes. IEEE Communications Magazine, 54(5), 44-50. doi: 10.1109/MCOM.2016.7470934.
  12. Brodnevs, D. and Kutins, A. (2018) Deterioration causes evaluation of third generation cellular LTE services for moving unmanned terrestrial and aerial systems. Electrical, Control and Communication Engineering, 14(2), 141–148. doi:10.2478/ecce-2018-0017.
  13. Brodnevs, D. and Kutins, A. (2020) An approach to constructing a model of delays in cells of a cellular network based on experimentally obtained data. In: Proceedings of 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, October 2020. IEEE, 206-211, doi: 10.1109/MTTW51045.2020.9245036.
  14. Caushaj, E. Ivanov, I., Fu, H., Sethi, I., Zhu, Y. (2014) Evaluating throughput and delay in 3G and 4G mobile architectures. Journal of Computer and Communications, 2, 1-8. doi: 10.4236/jcc.2014.210001.
  15. Chen, Y.H., Chu, C.L. and Chen, K.J. (2018) Measurement and analysis of LTE cell range and downlink throughput in suburban area. In: Proceedings of IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Bangkok, December 2017. IEEE, 58-63, doi: 10.1109/HPCC-SmartCity-DSS.2017.8.
  16. Colpaert, A., Vinogradov, E. and Pollin, S. (2018) Aerial coverage analysis of cellular systems at LTE and mmwave frequencies using 3D city models. Sensors, 18(12), 4311. https://doi.org/10.3390/s18124311.
  17. Danufane, F.H. and Di Renzo, M. (2023) Analysis of the delay distribution in cellular networks by using stochastic geometry. IEEE Open Journal of the Communications Society, 4, 1728-1744, 2023. doi: 10.1109/OJCOMS.2023.3294791.
  18. DOCOMO and Ericsson. (2017) RP-170779: study on enhanced LTE support for aerial vehicles. Available at: http://www.3gpp.org/ftp/tsg_ran/tsg_ran/TSGR_75/Docs/.
  19. Fiandrino, C., Martínez-Villanueva, D.J. and Widmer, J. (2023) A study on 5G performance and fast conditional handover for public transit systems. Computer Communications, 209, 499–512. https://doi.org/10.1016/J.COMCOM.2023.07.020.
  20. Garcia, J., Alfredsson, S. and Brunstrom, A. (2015) Delay metrics and delay characteristics: A study of four Swedish HSDPA+ and LTE networks. In: European Conference on Networks and Communications (EuCNC), Paris, July 2015. IEEE, 234-238, doi: 10.1109/EuCNC.2015.7194075.
  21. Hassan, A., Narayanan, A., Zhang, A., Ye, W., Zhu, R., Shuowei, Jin, Sh., Carpenter, J. and Mao Morley, Z. and Qian, F., and Zhang, Zh.-L. (2022) Vivisecting mobility management in 5G cellular networks. In: Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ‘22), Amsterdam, August 2022. New York: Association for Computing Machinery, 86-100. https://doi.org/10.1145/3544216.3544217.
  22. Heydarov, I. and Brodnevs, D. (2020) Experimental evaluation of the shadowing of a planar antenna caused by a quadcopter frame. Electrical, Control and Communication Engineering, 16(1), 37–43. https://doi.org/10.2478/ecce-2020-0006.
  23. Huang, G., Akopian, D. and Chen, C.L.P. (2015) Network delay modeling for assisted GPS. IEEE Transactions on Aerospace and Electronic Systems, 51(1), 52-64. doi: 10.1109/TAES.2014.120686.
  24. Huang, J., Qian, f., Gerber, A., Morley Mao, Z., Sen, S., and Spatscheck, O. (2012) A close examination of performance and power characteristics of 4G LTE networks. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ‘12), Low Wood Bay Lake District UK, June 2012. New York: Association for Computing Machinery, 225–238. https://doi.org/10.1145/2307636.2307658.
  25. Izydorczyk, T., Massanet Ginard, M., Svendsen, S., Berardinelli, G., Mogensen, P. (2020) Experimental evaluation of beamforming on UAVs in cellular systems. In: IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, December 2020. IEEE, 1-5. doi: 10.1109/VTC2020-Fall49728.2020.9348711.
  26. Khatouni, A.S., Mellia, M., Ajmone Marsan, M., Alfredsson, F., Karisson, J., Brunstrom, A. (2017) Speedtest-like measurements in 3G/4G Networks: The MONROE experience. In: Proceedings of the 29th International Teletraffic Congress (ITC 29), Genoa, September 2017. IEEE, 169-177. doi: 10.23919/ITC.2017.8064353.
  27. Kousias, K., Rajiullah, M., Caso, G., Alay, O., Brunstorm, A., De Nardis, L., Neri, M., Ali, U. and Di Benedetto, M.-G. (2022) Coverage and performance analysis of 5G non-standalone deployments. In: WiNTECH 2022 - Proceedings of the 2022 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation and CHaracterization, Part of MobiCom 2022, Sydney, October 2022. New York: Association for Computing Machinery, 61-68. https://doi.org/10.1145/3556564.3558233.
  28. Kutins, A. and Brodnevs, D. (2022) Determination of delay parameters in 4G LTE cellular mobile networks. In: Proceedings of 2022 Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW, Riga, October 2022. IEEE, 62-67. doi: 10.1109/MTTW56973.2022.9942617.
  29. Kutins, A. and Brodnevs, D. (2023) An approach to obtaining stable parameter estimates using experimentally obtained delay values in a cellular mobile network. Computer Networks and Communications, 1(1), 162–180. https://doi.org/10.37256/cnc.1120232829.
  30. Luo, J., Zhao, P., Zheng, F. -C. and Li, L. (2023) Delay evaluation for cellular-connected drones: experiments and analysis. In: 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, September 2022. IEEE, 1–5. https://doi.org/10.1109/vtc2022-fall57202.2022.10012989.
  31. Metsala, E. and Salmelin, J. (2012) Mobile Backhaul. John Wiley & Sons, Ltd. doi:10.1002/9781119941019.
  32. Morales, J., Rodriguez, G., Huang, G. and Akopian, D. (2020) Toward UAV control via cellular networks: delay profiles, delay modeling, and a case study within the 5-mile range. IEEE Transactions on Aerospace and Electronic Systems, 56(5), 4132-4151. doi: 10.1109/TAES.2020.2987406.
  33. Narayanan, A., Ramadan, E., Carpenter, J., Liu, Q., Liu, Y., Qian, F. and Zhang, Zh.-L. (2020) A first look at commercial 5G performance on smartphones. In: The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020, Taipei, April 2020. New York: Association for Computing Machinery, 894–905. https://doi.org/10.1145/3366423.3380169.
  34. Narayanan, A., Ramadan, E., Mehta, R., Xinyue, Y., Liu, Q., and Fezeu, R. A. K. and Dayalan, U. K., Verma, S., Ji, P., Li, T., Qian, F., Zhang, Zh.-L. (2020) Lumos5G: mapping and predicting commercial mmwave 5G throughput. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC. USA, October 2020. New York: Association for Computing Machinery, 176-193. https://doi.org/10.1145/3419394.3423629.
  35. Narayanan, A. Zhang, X., Zhu, R., Hassan, A., Jin, Sh., Zhu, X, Zhang, X., Rybkin, D., Yang, Zh., Mao Morley Zh., Qian, F., Zhang, Zh.-L. (2021) A variegated look at 5G in the wild: performance, power, and QoE implications. In: SIGCOMM 2021 - Proceedings of the ACM SIGCOMM 2021 Conference, USA, August 2021. New York: Association for Computing Machinery, 610-625. https://doi.org/10.1145/3452296.3472923.
  36. Nguyen, H.C., Amorim, R., Wigard, J., Kovács, I.Z., Sørensen, T.B. and Mogensen, P.E. (2018) How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access, 6, 12304-12317. doi: 10.1109/ACCESS.2018.2808998.
  37. Putra, G.M., Budiman, E., Malewa, Y., Cahyadi, D., Taruk, M. and Hairah, U. (2021) 4G LTE Experience: Reference Signal Received Power, Noise Ratio and Quality. In: 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, Surabaya, April 2021. IEEE, 139-144. doi: 10.1109/EIConCIT50028.2021.9431853.
  38. Rischke, J., Sossalla, P., Itting, S., Fitzek, F. H. P. and Reisslein, M. (2021) 5G campus networks: a first measurement study. IEEE Access, 9, 121786-121803. doi: 10.1109/ACCESS.2021.3108423.
  39. Rochman, M.I., Sathya, V., Nunez, N., Fernandez, D., Ghosh, M., Ibrahim, A. S., Payne, W. (2022) A comparison study of cellular deployments in Chicago and Miami using apps on smartphones. In: WiNTECH 2021 - Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental evaluation and CHaracterization, Part of ACM MOBICOM 2021, New Orleans, February 2022. New York: Association for Computing Machinery, 61–68. https://doi.org/10.1145/3477086.3480843.
  40. Tso, F.P., Teng, J., Jia, W. and Xuan, D. (2012) Mobility: a double-edged sword for HSPA networks: a large-scale test on hong kong mobile HSPA networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1895–1907. doi: 10.1109/TPDS.2011.289.
  41. Vinogradov, E. Sallouha, H., De Bast, S., Azari, M., Pollin, S. ( 2019) Tutorial on UAV: a blue sky view on wireless communication. Journal of Mobile Multimedia, 14, 395-468. doi:10.13052/jmm1550-4646.1443.
  42. Xu, D., Zhou, A.., Zhang, X., Wang, G., Liu, X., An, C., Shi, Y., Liu, L. and Ma, H. (2020) Understanding operational 5G: a first measurement study on its coverage, performance and energy consumption. In: SIGCOMM 2020 - Proceedings of the 2020 Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, USA, August 2020. New York: Association for Computing Machinery, 479–494. https://doi.org/10.1145/3387514.3405882.
  43. Yamamoto, K., Wakamiya, N., Nakano, R. and Fujiwara, R. (2021) Model-based anomaly detection in response delay in communication through LTE network. In: 22nd Asia-Pacific Network Operations and Management Symposium, APNOMS 2021, Tainan, September 2021. IEEE, 21-24. doi: 10.23919/APNOMS52696.2021.9562666.
  44. Zeinali, M. and Thompson, J.S. (2018) Practical evaluation of UK internet network characteristics for demand-side response applications. In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2018. Aalborg, October 2018. IEEE, 1-6. doi: 10.1109/SmartGridComm.2018.8587541.
DOI: https://doi.org/10.2478/ttj-2025-0013 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 160 - 174
Published on: Apr 17, 2025
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Deniss Brodnevs, Aleksandrs Kutins, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.