References
- Atkinson, A. B., Guio, A. C., & Marlier, E. (2017) Monitoring social inclusion in Europe. Luxembourg: Publications Office of the European Union, pp. 3-71.
- Bezyak, J. L., Sabella, S. A., & Gattis, R. H. (2017) Public transportation: an investigation of barriers for people with disabilities. Journal of Disability Policy Studies, 28(1), 52-60. doi:10.1177/1044207317702070.
- Briand, A. S., Côme, E., Trépanier, M., & Oukhellou, L. (2017) Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 79, 274-289. doi:10.1016/j.trc.2017.03.021.
- Bridger, O. (2020) Attitudinal barriers to disability and the loneliness and social isolation of physically disabled people in Reading, England. University of Reading, Reading, UK: Participation Lab Research Report.
- Deganis, I., Haghian, P. Z., Tagashira, M., & Alberti, A. (2021) Leveraging digital technologies for social inclusion. United Nations Department of Economic and Social Affairs. Policy Brief No 92.
- Evcil, A. N. (2018) Barriers and preferences to leisure activities for wheelchair users in historic places. Tourism Geographies, 20(4), 698-715. doi:10.1080/14616688.2017.1293721.
- Goulet-Langlois, G., Koutsopoulos, H. N., Zhao, Z., & Zhao, J. (2017) Measuring regularity of individual travel patterns. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1583-1592. doi:10.1109/TITS.2017.2728704.
- Harriehausen-Mühlbauer, B. (2016) Communicating with wheelscout via voice: Speech technology in a mobile navigation app computing barrier-free routes. In: 2016 Future Technologies Conference (FTC), San Francisco, December 2016. IEEE: pp. 488-493.
- Kamyabi, M., & Alipour, H. (2022) An investigation of the challenges faced by the disabled population and the implications for accessible tourism: Evidence from a Mediterranean destination. Sustainability, 14(8), 4702. doi:10.3390/su14084702.
- Kim, E. J., Kim, Y., & Kim, D. K. (2021) Interpretable machine-learning models for estimating trip purpose in smart card data. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, 174(2), 108-117. doi:10.1680/jmuen.20.00003
- Kumar, M., Kumar, K., & Das, P. (2021) Study on road traffic congestion: A review. Recent Trends in Communication and Electronics, 230-240. doi:10.1201/9781003193838-43.
- Long, Y., & Thill, J. C. (2015) Combining smart card data and household travel survey to analyze jobs– housing relationships in Beijing. Computers, Environment and Urban Systems, 53, 19-35. doi:10.1016/j.compenvurbsys.2015.02.005.
- Mohamed, K., Côme, E., Oukhellou, L., & Verleysen, M. (2016) Clustering smart card data for urban mobility analysis. IEEE Transactions on intelligent transportation systems, 18(3), 712-728. doi: 10.1109/TITS.2016.2600515.
- O’Neill, J. L. (2021) Accessibility for all abilities: how universal design, universal design for learning, and inclusive design combat inaccessibility and ableism. Journal of Open Access to Law, 9(1).
- Open Street Map. (2024) OpenStreetMap Foundation . Accessed on March 2024.
- Qi, G., Huang, A., Guan, W., & Fan, L. (2018) Analysis and prediction of regional mobility patterns of bus travellers using smart card data and points of interest data. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1197-1214 . doi:10.1109/TITS.2018.2840122.
- Rīgas Satiksme. (2024) Maršrutu saraksti Rīgas Satiksme sabiedriskajam transportam (Riga Satiksme public transport timetables). Accessed on March 2024.
- Tao, S., Zhang, M., & Wu, J. (2021) Big data applications in urban transport research in Chinese cities: an overview. Big Data Applications in Geography and Planning, 220-244.
- Welch, T. F., & Widita, A. (2019) Big data in public transportation: A review of sources and methods. Transport Reviews, 39(6), 795–818.. doi:10.1080/01441647.2019.1616849.
- Xu, C., Liu, D., & Mei, X. (2021) Exploring an efficient POI recommendation model based on user characteristics and spatial-temporal factors. Mathematics, 9(21), 2673. doi:10.3390/math9212673.
- Yu, Y., Si, X., Hu, C., & Zhang, J. (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199.
- Zahabi, M., Zheng, X., Maredia, A., & Shahini, F. (2023) Design of navigation applications for people with disabilities: A review of literature and guideline formulation. International Journal of Human– Computer Interaction, 39(14), 2942-2964.
- Zhong, C., Schläpfer, M., Müller Arisona, S., Batty, M., Ratti, C., & Schmitt, G. (2017) Revealing centrality in the spatial structure of cities from human activity patterns. Urban Studies, 54(2), 437-455. doi:10.1177/0042098015601599.