Have a personal or library account? Click to login
Enhancing Public Transport Accessibility for People with Motor Disabilities Through Deep Learning on Graphs Cover

Enhancing Public Transport Accessibility for People with Motor Disabilities Through Deep Learning on Graphs

Open Access
|Feb 2025

References

  1. Atkinson, A. B., Guio, A. C., & Marlier, E. (2017) Monitoring social inclusion in Europe. Luxembourg: Publications Office of the European Union, pp. 3-71.
  2. Bezyak, J. L., Sabella, S. A., & Gattis, R. H. (2017) Public transportation: an investigation of barriers for people with disabilities. Journal of Disability Policy Studies, 28(1), 52-60. doi:10.1177/1044207317702070.
  3. Briand, A. S., Côme, E., Trépanier, M., & Oukhellou, L. (2017) Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 79, 274-289. doi:10.1016/j.trc.2017.03.021.
  4. Bridger, O. (2020) Attitudinal barriers to disability and the loneliness and social isolation of physically disabled people in Reading, England. University of Reading, Reading, UK: Participation Lab Research Report.
  5. Deganis, I., Haghian, P. Z., Tagashira, M., & Alberti, A. (2021) Leveraging digital technologies for social inclusion. United Nations Department of Economic and Social Affairs. Policy Brief No 92.
  6. Evcil, A. N. (2018) Barriers and preferences to leisure activities for wheelchair users in historic places. Tourism Geographies, 20(4), 698-715. doi:10.1080/14616688.2017.1293721.
  7. Goulet-Langlois, G., Koutsopoulos, H. N., Zhao, Z., & Zhao, J. (2017) Measuring regularity of individual travel patterns. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1583-1592. doi:10.1109/TITS.2017.2728704.
  8. Harriehausen-Mühlbauer, B. (2016) Communicating with wheelscout via voice: Speech technology in a mobile navigation app computing barrier-free routes. In: 2016 Future Technologies Conference (FTC), San Francisco, December 2016. IEEE: pp. 488-493.
  9. Kamyabi, M., & Alipour, H. (2022) An investigation of the challenges faced by the disabled population and the implications for accessible tourism: Evidence from a Mediterranean destination. Sustainability, 14(8), 4702. doi:10.3390/su14084702.
  10. Kim, E. J., Kim, Y., & Kim, D. K. (2021) Interpretable machine-learning models for estimating trip purpose in smart card data. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, 174(2), 108-117. doi:10.1680/jmuen.20.00003
  11. Kumar, M., Kumar, K., & Das, P. (2021) Study on road traffic congestion: A review. Recent Trends in Communication and Electronics, 230-240. doi:10.1201/9781003193838-43.
  12. Long, Y., & Thill, J. C. (2015) Combining smart card data and household travel survey to analyze jobs– housing relationships in Beijing. Computers, Environment and Urban Systems, 53, 19-35. doi:10.1016/j.compenvurbsys.2015.02.005.
  13. Mohamed, K., Côme, E., Oukhellou, L., & Verleysen, M. (2016) Clustering smart card data for urban mobility analysis. IEEE Transactions on intelligent transportation systems, 18(3), 712-728. doi: 10.1109/TITS.2016.2600515.
  14. O’Neill, J. L. (2021) Accessibility for all abilities: how universal design, universal design for learning, and inclusive design combat inaccessibility and ableism. Journal of Open Access to Law, 9(1).
  15. Open Street Map. (2024) OpenStreetMap Foundation . Accessed on March 2024.
  16. Qi, G., Huang, A., Guan, W., & Fan, L. (2018) Analysis and prediction of regional mobility patterns of bus travellers using smart card data and points of interest data. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1197-1214 . doi:10.1109/TITS.2018.2840122.
  17. Rīgas Satiksme. (2024) Maršrutu saraksti Rīgas Satiksme sabiedriskajam transportam (Riga Satiksme public transport timetables). Accessed on March 2024.
  18. Tao, S., Zhang, M., & Wu, J. (2021) Big data applications in urban transport research in Chinese cities: an overview. Big Data Applications in Geography and Planning, 220-244.
  19. Welch, T. F., & Widita, A. (2019) Big data in public transportation: A review of sources and methods. Transport Reviews, 39(6), 795–818.. doi:10.1080/01441647.2019.1616849.
  20. Xu, C., Liu, D., & Mei, X. (2021) Exploring an efficient POI recommendation model based on user characteristics and spatial-temporal factors. Mathematics, 9(21), 2673. doi:10.3390/math9212673.
  21. Yu, Y., Si, X., Hu, C., & Zhang, J. (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199.
  22. Zahabi, M., Zheng, X., Maredia, A., & Shahini, F. (2023) Design of navigation applications for people with disabilities: A review of literature and guideline formulation. International Journal of Human– Computer Interaction, 39(14), 2942-2964.
  23. Zhong, C., Schläpfer, M., Müller Arisona, S., Batty, M., Ratti, C., & Schmitt, G. (2017) Revealing centrality in the spatial structure of cities from human activity patterns. Urban Studies, 54(2), 437-455. doi:10.1177/0042098015601599.
DOI: https://doi.org/10.2478/ttj-2025-0008 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 82 - 89
Published on: Feb 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Francesco Maria Turno, Irina Yatskiv Jackiva, Evelīna Budiloviča, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.