Have a personal or library account? Click to login
Optimization of Restricted Container Relocation Using the Monte Carlo Tree Search Method Cover

Optimization of Restricted Container Relocation Using the Monte Carlo Tree Search Method

Open Access
|Feb 2025

References

  1. Abdelali, C., Khadidja, Y., & Bellatreche, L. (2023) Optimization of dangerous goods stowage : A hybrid approach between faster R-CNN and coronavirus metaheuristic. In: 2023 IEEE International Conference on Big Data (BigData), 2561‑2569. https://doi.org/10.1109/BigData59044.2023.10386793.
  2. Amrani, F., Yachba, K., Belayachi, N., & Hamdadou, D. (2018) A decision-making system for container storage management in a seaport using the ant-colony optimisation algorithm. International Journal of Management and Decision Making, 17(3), 348-367.
  3. Azab, A., & Morita, H. (2022a) A zero-blockage based scheduling for import containers pickup operations at container terminal yards. In: Proceedings of the 11th International Conference on Operations Research and Enterprise Systems, 286‑293. https://doi.org/10.5220/0010885000003117.
  4. Azab, A., & Morita, H. (2022b) The block relocation problem with appointment scheduling. European Journal of Operational Research, 297(2), 680‑694. https://doi.org/10.1016/j.ejor.2021.06.007.
  5. Bacci, T., Mattia, S., & Ventura, P. (2019) The bounded beam search algorithm for the block relocation problem. Computers & Operations Research, 103, 252‑264. https://doi.org/10.1016/j.cor.2018.11.008.
  6. Bacci, T., Mattia, S., & Ventura, P. (2023) The realization-independent reallocation heuristic for the stochastic container relocation problem. Soft Computing, 27(7), 4223‑4233. https://doi.org/10.1007/s00500-022-07070-3.
  7. Belayachi, N., Gelareh, S., Yachba, K., & Bouamrane, K. (2017) The logistic of empty containers′ return in the liner-shipping network. Transport and Telecommunication Journal, 18(3), 207-219.
  8. Bendaoud, Z., & Yachba, K. (2017) Towards a decision support system for optimization of container placement in a container terminal. International Journal of Strategic Information Technology and Applications (IJSITA), 8(3), 59-72.
  9. Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity considerations for the blocks relocation problem. European Journal of Operational Research, 219(1), 96‑104. https://doi.org/10.1016/j.ejor.2011.12.039
  10. Chaslot, G., Winands, M.H.M., Jaap Van Den Herik, H., Uiterwijk, J. W. H. M., Bouzy, B. (2008) Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation, 04(03), 343‑57. doi: 10.1142/S1793005708001094.
  11. Coquelin, P.-A., Munos, R. (2007) Bandit algorithms for tree search. https://doi.org/10.48550/ARXIV.CS/0703062.
  12. Da Silva Firmino, A., & Cesário Times, V. (2024) A hybrid biased random-key genetic algorithm for the container relocation problem. In M. Khosravy, N. Gupta, & O. Witkowski (Éds.), Frontiers in Genetics Algorithm Theory and Applications, 55‑80. Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8107-6_4.
  13. Đurasević, M., & Đumić, M. (2024) Designing relocation rules with genetic programming for the container relocation problem with multiple bays and container groups. Applied Soft Computing, 150, 111104. https://doi.org/10.1016/j.asoc.2023.111104
  14. Đurasević, M., Đumić, M., Čorić, R., & Gil-Gala, F. J. (2023). Automated design of relocation rules for minimising energy consumption in the container relocation problem (arXiv:2307.01513). arXiv. http://arxiv.org/abs/2307.01513
  15. Fabbri, A. (2015) Dynamique d’apprentissage pour Monte Carlo Tree Search : Applications aux jeux de Go et du Clobber solitaire impartial. Université Claude Bernard - Lyon 1, 214.
  16. Feng, Y., Song, D.-P., Li, D., & Zeng, Q. (2020) The stochastic container relocation problem with flexible service policies. Transportation Research Part B: Methodological, 141, 116‑163. https://doi.org/10.1016/j.trb.2020.09.006.
  17. Galle, V., Barnhart, C., & Jaillet, P. (2018) A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations. European Journal of Operational Research, 267(2), 467‑477. https://doi.org/10.1016/j.ejor.2017.11.053.
  18. Galle, V., Manshadi, V. H., Boroujeni, S. B., Barnhart, C., & Jaillet, P. (2018) The Stochastic Container Relocation Problem. Transportation Science, 52(5), 1035‑1058. https://doi.org/10.1287/trsc.2018.0828.
  19. Gulić, M., Maglić, L., Krljan, T., Maglić, L. (2022) Solving the container relocation problem by using a metaheuristic genetic algorithm. Applied Sciences, 12(15), 7397. doi:10.3390/app12157397.
  20. Jiang, T., Zeng, B., Wang, Y., & Yan, W. (2021) A new heuristic reinforcement learning for container relocation problem. Journal of Physics: Conference Series, 1873(1), 012050. https://doi.org/10.1088/1742-6596/1873/1/012050.
  21. Jin, B. (2020) On the integer programming formulation for the relaxed restricted container relocation problem. European Journal of Operational Research, 281(2), 475‑482. https://doi.org/10.1016/j.ejor.2019.08.041.
  22. Jovanovic, R., Tanaka, S., Nishi, T., & Voß, S. (2019) A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan. Flexible Services and Manufacturing Journal, 31(3), 702‑729. https://doi.org/10.1007/s10696-018-9320-3.
  23. Jovanovic, R., & Voß, S. (2014). A chain heuristic for the Blocks Relocation Problem. Computers & Industrial Engineering, 75, 79‑86. https://doi.org/10.1016/j.cie.2014.06.010.
  24. Khadidja, Y., Amina, F. I., & Eddine, B. S. (2024). Enhancing Transportation Efficiency with Optimal Container Placement Using the Bat Algorithm. Transport and Telecommunication Journal, 25(2), 200-208.
  25. Kim, K. H., & Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers & Operations Research, 33(4), 940‑954. https://doi.org/10.1016/j.cor.2004.08.005.
  26. Kimms, A., & Wilschewski, F. (2023) A new modeling approach for the unrestricted block relocation problem. OR Spectrum, 45(4), 1071‑1111. https://doi.org/10.1007/s00291-023-00728-w.
  27. Kocsis, L., & Szepesvári, C. (2006) Bandit Based Monte-Carlo Planning. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Éds.), Machine Learning: ECML 2006, 4212, 282‑293. Springer Berlin Heidelberg. https://doi.org/10.1007/11871842_29.
  28. Liu, F., Ye, T., & Zhang, Z. (2023) Dynamic Attention Model – A Deep Reinforcement Learning Approach for Container Relocation Problem. In H. Fujita, Y. Wang, Y. Xiao, & A. Moonis (Éds.), Advances and Trends in Artificial Intelligence. Theory and Applications, 13926, 273‑285. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36822-6_24.
  29. Maglić, L., Gulić, M., & Maglić, L. (2019) Optimization of Container Relocation Operations in Port Container Terminals. Transport, 35(1), 37‑47. https://doi.org/10.3846/transport.2019.11628.
  30. Ozcan, S., & Eliiyi, D. T. (2017) A reward-based algorithm for the stacking of outbound containers. Transportation Research Procedia, 22, 213‑221. https://doi.org/10.1016/j.trpro.2017.03.028.
  31. Perez, D., Mostaghim, S., Samothrakis, S., & Lucas, S. M. (2015) Multiobjective Monte Carlo Tree Search for Real-Time Games. IEEE Transactions on Computational Intelligence and AI in Games, 7(4), 347‑360. https://doi.org/10.1109/TCIAIG.2014.2345842
  32. Sutton, R. S., & Barto, A. G. (2018) Reinforcement learning: An introduction (Second edition). The MIT Press.
  33. Tahiri, H., Khadidja, Y., & Bouamrane, K. (2022) Towards a multi-criteria decision approach to solving the container storage problem: container ship loading component. International Journal of Organizational and Collective Intelligence (IJOCI), 12(1), 1-21.
  34. Tahiri, H., Yachba, K., & Bouamrane, K. (2020) A container placement approach in a container-ship based on the electre 2 method. In: 4th International Symposium on Informatics and its Applications (ISIA), IEEE, 1-5.
  35. Tanaka, S., & Voß, S. (2019). An exact algorithm for the block relocation problem with a stowage plan. European Journal of Operational Research, 279(3), 767‑781. https://doi.org/10.1016/j.ejor.2019.06.014.
  36. Wang, Z., Chenhao, Zh., Ada, Ch., Jingkun, G. (2024) A policy-based Monte Carlo Tree Search method for container pre-marshalling. International Journal of Production Research, 62(13), 4776‑92. doi:10.1080/00207543.2023.2279130.
  37. Wei, L., Wei, F., Schmitz, S., Kunal, K., Noche, B. (2021) Optimization of container relocation problem via reinforcement learning. Logistics Journal: Proceedings – ISSN 2192-9084, 17. doi: 10.2195/lj_Proc_wei_en_202112_02.
  38. Yachba, K., Bendaoud, Z., & Bouamrane, K. (2018) A technique for resolution of the assignment problem containers in a container terminal. In: Handbook of Research on Biomimicry in Information Retrieval and Knowledge Management, IGI Global, 120-132.
  39. Yachba, K., Bendaoud, Z., & Bouamrane, K. (2018) Toward a decision support system for regulation in an urban transport network. International Journal of Strategic Information Technology and Applications (IJSITA), 9(2), 1-17.
  40. Yachba, K., Bouamrane, K., & Gelareh, S. (2015) Containers storage optimization in a container terminal using a multimethod multi-level approach. In: The International Conference on Computers & Industrial Engineering (CIE45), 28-30.
  41. Yachba, K., Chaabane, A., & Benadda, M.A. (2021) Un système d’aide à la décision pour l’optimisation de processus de distribution des produits finaux. In : Séminaire international sur les mathématiques et l’informatique, Février, Oran.
  42. Yachba, K., Gelareh, S., & Bouamrane, K. (2016) Storage management of hazardous containers using the genetic algorithm. Transport and Telecommunication Journal, 17(4), 371-383.
  43. Ye, R., Ye, R., & Zheng, S. (2023) Machine Learning Guides the Solution of Blocks Relocation Problem in Container Terminals. Transportation Research Record: Journal of the Transportation Research Board, 2677(3), 721‑737. https://doi.org/10.1177/03611981221117157.
  44. Zhang, C., Guan, H., Yuan, Y., Chen, W., & Wu, T. (2020) Machine learning-driven algorithms for the container relocation problem. Transportation Research Part B: Methodological, 139, 102‑131. https://doi.org/10.1016/j.trb.2020.05.017.
  45. Zhang, Zh., Tan, K.Ch., Qin, W., Li, Y., Ek Peng Chew, E.P., Xu, K. (2023) Online container relocation problem with retrieval probability. doi:10.2139/ssrn.4604944.
  46. Zhou, S., & Zhang, Q. (2024) Real-time batch optimization for the stochastic container relocation problem. Applied Sciences, 14(6), 2624. https://doi.org/10.3390/app14062624.
  47. Zhu, W., Qin, H., Lim, A., & Zhang, H. (2012) Iterative deepening A* algorithms for the container relocation problem. IEEE Transactions on Automation Science and Engineering, 9(4), 710‑722. https://doi.org/10.1109/TASE.2012.2198642.
  48. Zweers, B. G., Bhulai, S., & Van Der Mei, R. D. (2020) Optimizing pre-processing and relocation moves in the stochastic container relocation problem. European Journal of Operational Research, 283(3), 954‑971. https://doi.org/10.1016/j.ejor.2019.11.067.
DOI: https://doi.org/10.2478/ttj-2025-0002 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 13 - 22
Published on: Feb 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Abdelali Chaabane, Khadidja Yachba, Ladjel Bellatreche, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.