References
- Amato, F., Guignard, F., Robert, S., & Kanevski, M. (2020) A novel framework for spatio-temporal prediction of environmental data using deep learning. Scientific Reports 2020, 10(1), 1–11. https://doi.org/10.1038/s41598-020-79148-7.
- Amin Al Noor, A. & Mehanaz, S. (2022) Analysis of travel time in urban area of a developing country, context: Dhaka, Bangladesh. In: Proceedings of 5th Annual Paper Meet and 2nd Civil Engineering Congress, Dhaka, Bangladesh.
- Arooj, A., Farooq, M. S., Akram, A., Iqbal, R., Sharma, A., & Dhiman, G. (2022) Big Data Processing and Analysis in Internet of Vehicles: Architecture, Taxonomy, and Open Research Challenges. Archives of Computational Methods in Engineering, 29(2), 793–829. https://doi.org/10.1007/S11831-021-09590-X/TABLES/13.
- Bachechi, C., Po, L., & Rollo, F. (2022) Big Data Analytics and Visualization in Traffic Monitoring. Big Data Research, 27, 100292. https://doi.org/10.1016/J.BDR.2021.100292.
- Dhaka Tribune. (2018) Dhaka remains the world’s most densely populated city. (n.d.). Accessed February 16, 2024, https://www.dhakatribune.com/bangladesh/dhaka/158221/dhaka-remains-the-world%E2%80%99s-most-densely-populated.
- Hossain, I., & Nower, N. (2022) Traffic data collection and visualization tool for knowledge discovery using google maps. International Journal of Software Innovation (IJSI), 10(1), 1-12. https://doi.org/10.4018/IJSI.293270.
- Jaman, F., Amin, M. B. (2023) Traffic speed study on technical to Shyamoli road of Dhaka City, Bangladesh. International Journal of Research in Civil Engineering and Technology, 4(1), 34-43. https://www.researchgate.net/publication/372914718.
- Jindal, T., Giridhar, P., Tang, L. A., Li, J., & Han, J. (2013) Spatiotemporal periodical pattern mining in traffic data. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2505821.2505837.
- Kafritsas. N. (2021) Time series classification using Dynamic Time Warping. Towards Data Science. Accessed March 19, 2024, https://towardsdatascience.com/time-series-classification-using-dynamic-time-warping-61dcd9e143f6.
- Kulshrestha, S. K. (2022) Dynamics of Megacity Regional Development. In: Advances in 21st Century Human Settlements, 65–105. https://doi.org/10.1007/978-981-16-5469-5_3/COVER.
- Mannering, F. L., Washburn, S. S. (2019) Principles of Highway Engineering and Traffic Analysis, 7th edn.: John Wiley & Sons.
- Momin, K. Al, Barua, S., Jamil, M. S., & Hamim, O. F. (2023a) Short duration traffic flow prediction using Kalman filtering. In: AIP Conference Proceedings, 2713(1). https://doi.org/10.1063/5.0129721.
- Nama, M., Nath, A., Bechra, N., Bhatia, J., Tanwar, S., Chaturvedi, M., &Sadoun, B. (2021) Machine learning-based traffic scheduling techniques for intelligent transportation system: Opportunities and challenges. International Journal of Communication Systems, 34(9), e4814. https://doi.org/10.1002/DAC.4814.
- Neilson, A., Indratmo, Daniel, B., & Tjandra, S. (2019) Systematic Review of the Literature on Big Data in the Transportation Domain: Concepts and Applications. Big Data Research, 17, 35–44. https://doi.org/10.1016/J.BDR.2019.03.001.
- Popat, S. M., Emmanuel, M. (2014) Review and Comparative Study of Clustering Techniques. International Journal of Computer Science and Information Technologies, 5 (1), 805-812.
- Rahman, M. M., & Nower, N. (2023) Attention based Deep Hybrid Networks for Traffic Flow Prediction using Google Maps Data. ACM International Conference Proceeding Series, 74–81. https://doi.org/10.1145/3589883.3589894.
- Rahman, M. M., Ariful Hoque, S. M., & Zaber, M. I. (2018) Understanding real time traffic characteristics of urban zones using GPS data: A computational study on Dhaka City. In: 2018 Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Conference on Imaging, Vision and Pattern Recognition, ICIEV-IVPR 2018, 514–519. https://doi.org/10.1109/ICIEV.2018.8640961.
- Rahman, M. M., Shuvo, M. M. M., Zaber, M. I., & Ali, A. A. (2018) Traffic Pattern Analysis from GPS Data: A Case Study of Dhaka City. In: 2018 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2018. DOI:10.1109/CONECCT.2018.8482371.
- Rahman, Md. M., Nower, N. (2024) Inferring Traffic Patterns of Dhaka City: A Spatio-temporal Analysis over a Year. Research Square. https://doi.org/10.21203/rs.3.rs-3827938/v1.
- Sekar, E. V., Anuradha, J., Arya, A., Balusamy, B., Chang, V. (2018) A framework for smart traffic management using hybrid clustering techniques. Cluster Computing, 21(1), 347–362. https://doi.org/10.1007/S10586-017-0855-Y/METRICS.
- Sheikh, M. S., & Peng, Y. (2022) A Comprehensive Review on Traffic Control Modeling for Obtaining Sustainable Objectives in a Freeway Traffic Environment. Journal of Advanced Transportation, 2022. https://doi.org/10.1155/2022/1012206.
- Stathopoulos, A., & Karlaftis, M. (2001) Temporal and Spatial Variations of Real-Time Traffic Data in Urban Areas. Https://Doi.Org/10.3141/1768-16, 1768, 135–140. https://doi.org/10.3141/1768-16.
- TBS Report. (2022) Which vehicle dominates Dhaka city roads? The Business Standard. Accessed February 16, 2024, https://www.tbsnews.net/infograph/numbers/which-vehicle-dominates-dhaka-city-roads-396846.
- Tolaini, M. (2020) Megacities and globalization of the luxury world.
- Turner, Sh. M. (1992) Examination of Indicators of Congestion Level. Traffic Operations. Transportation Research Record, 1360, 150-157: Transportation Research Board ISSN: 0361-1981.
- Yuan, H., & Li, G. (2021) A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation. Data Science and Engineering, 6(1), 63–85. https://doi.org/10.1007/S41019-020-00151-Z/TABLES/3.
- Zhang, H., Dong, Y., Li, J., & Xu, D. (2022) Dynamic Time Warping under Product Quantization, with Applications to Time-Series Data Similarity Search. IEEE Internet of Things Journal, 9(14), 11814–11826. https://doi.org/10.1109/JIOT.2021.3132017.
- Zhang, Z., He, Q., Tong, H., Gou, J., & Li, X. (2016) Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network. Transportation Research Part C: Emerging Technologies, 71, 284–302. https://doi.org/10.1016/J.TRC.2016.08.006.
- Zhao, P., & Hu, H. (2019) Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing. Cities, 92, 164–174. https://doi.org/10.1016/J.CITIES.2019.03.022.