Have a personal or library account? Click to login
Algorithmization and Hardware Implementation of Polar Coding for 5G Telecommunications Cover

Algorithmization and Hardware Implementation of Polar Coding for 5G Telecommunications

Open Access
|Jun 2024

References

  1. Bae, J. H., Abotabl, A., Lin, H. P., Song, K. B., and Lee, J. (2019) An overview of channel coding for 5G NR cellular communications. APSIPA transactions on signal and information processing, 8, e17. https://doi.org/10.1017/ATSIP.2019.10.
  2. Benkhouya, R., Idriss, C. and Youssef, H. (2020) Study of the operational SNR while constructing polar codes. International Journal of Electrical and Computer Engineering, 10(3), 3200–3207. http://doi.org/10.11591/ijece.v10i3.pp3200–3207.
  3. Bocherer, G., Prinz, T., Yuan, P. and Steiner, F. (2017) Efficient Polar Code Construction for Higher-Order Modulation. In: Proceedings of the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017, 1–6. IEEE Press. http://doi.org/10.1109/WCNCW.2017.7919039.
  4. Boiko, J., Pyatin, I., Eromenko, O., and Karpova, L. (2024) Evaluation of the Capabilities of LDPC Codes for Network Applications in the 802.11ax Standard. IoT Based Control Networks and Intelligent Systems. Lecture Notes in Networks and Systems, 789. Singapore: Springer. https://doi.org/10.1007/978-981-99-6586-1_25.
  5. Boiko, J., Pyatin, I., and Eromenko, O. (2020) Simulation of the Transport Channel with Polar Codes for the 5G Mobile Communication. In: Proceedings of the 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, 06–09 October 2020, 182–186. IEEE Press. http://doi.org/10.1109/PICST51311.2020.9468013.
  6. Boiko, J., Pyatin, I., and Eromenko, O. (2021) Design and evaluation of the efficiency of channel coding LDPC codes for 5G information technology. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 9(4), 867–879. https://doi.org/10.52549/ijeei.v9i4.3188.
  7. Chiu, M.-C. (2022) Analysis and Design of Polar-Coded Modulation. IEEE Transactions on Communications. 70(3), 1508–1521. https://doi.org/10.1109/TCOMM.2022.3142280.
  8. Ghosh, A., Maeder, A., Baker M., and Chandramouli, D. (2019) 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access, 7, 127639–127651. http://doi.org/10.1109/ACCESS.2019.2939938.
  9. Jin, J., Deng, R., Liu, T., Li, L. (2020) On Error Performance and Concatenated Coding of Polar Codes in AWGN Channels. IOP Conference Series: Materials Science and Engineering, 768, 072075. http://doi.org/10.1088/1757-899X/768/7/072075.
  10. Krasser, F. G., Liberatori, M. C., Coppolillo, L., Arnone, L., and Moreira, J. C. (2021) Fast and efficient FPGA implementation of Polar Codes and SoC test bench. Microprocessors and Microsystems, 84, 104264. https://doi.org/10.1016/j.micpro.2021.104264.
  11. Ochiai, H., Mitran, P. and Vincent Poor, H. (2021) Capacity-Approaching Polar Codes with Long Codewords and Successive Cancellation Decoding Based on Improved Gaussian Approximation. IEEE Transactions on Communications, 69(1), 31–43. http://doi.org/10.1109/TCOMM.2020.3030057.
  12. Oommen, M.S., and Ravishankar, S. (2015) FPGA implementation of an advanced encoding and decoding architecture of polar codes. In: Proceedings of the 2015 International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA), Bengaluru, 08–10 January 2015, 1–6. IEEE Press. http://doi.org/10.1109/VLSI-SATA.2015.7050456.
  13. Pyatin, I., Boiko, J., Eromenko, O., and Parkhomey, I. (2023) Implementation and analysis of 5G network identification operations at low signal-to-noise ratio. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(3), 496–505. http://doi.org/10.12928/telkomnika.v21i3.22893.
  14. Parmar, R.N., and Jain, A. (2021) A Verilog Implementation and Performance Analysis of Polar Encoder and Decoder for Next Generation Communication Application. Journal of Emerging Technologies and Innovative Research, 8(2), 1751–1756. https://www.jetir.org/view?paper=JETIR2102212.
  15. Qin, M., Guo, J., Bhatia, A., Fàbregas, G. A. and Siegel, P. H. (2017) Polar Code Constructions Based on LLR Evolution. IEEE Communications Letters, 21(6), 1221–1224, June 2017, http://doi.org/10.1109/LCOMM.2017.2656126.
  16. Su, B.-Sh., Lee, Ch.-H., Chiueh, T.-D. (2022) A 58.6/91.3 pJ/b Dual-Mode Belief-Propagation Decoder for LDPC and Polar Codes in the 5G Communications Standard. IEEE Solid-State Circuits Letters, 5, 98–101. https://doi.org/10.1109/LSSC.2022.3167423.
  17. Tahir, B. and Rupp, M. (2017) New construction and performance analysis of Polar codes over AWGN channels. In: Proceedings of the 2017 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, 03–05 May 2017, 1–4. IEEE Press. http://doi.org/10.1109/ICT.2017.7998250.
  18. Yuan, B. and Parhi, K. K. (2014) Successive cancellation list polar decoder using log-likelihood ratios. In: Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 02–05 November 2014, 548–552. IEEE Press. http://doi.org/10.1109/ACSSC.2014.7094505.
  19. Yu, Q., Shi, Z., Li, X., Du, J., Zhang, J. and Rabie, K. M. (2018) On the Concatenations of Polar Codes and Non-Binary LDPC Codes. IEEE Access, 6, 65088–65097 https://doi.org/10.1109/ACCESS.2018.2877178.
  20. Zhurakovskyi, B., Boiko, J., Druzhynin, V., Zeniv, I., and Eromenko, O. (2020). Increasing the efficiency of information transmission in communication channels. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 19(3), 1306–1315. http://doi.org/10.11591/ijeecs.v19.i3.pp1306–1315.
DOI: https://doi.org/10.2478/ttj-2024-0022 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 300 - 310
Published on: Jun 26, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ilya Pyatin, Juliy Boiko, Oleksander Eromenko, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.