Have a personal or library account? Click to login
Position Falsification Detection Approach Using Travel Distance-Based Feature Cover

Position Falsification Detection Approach Using Travel Distance-Based Feature

Open Access
|Jun 2024

References

  1. Kim, J.-W., Kim, J.-W. and Jeon, D.-K. (2018) A cooperative communication protocol for QoS provisioning in ieee 802.11 p/wave vehicular networks. Italian National Conference on Sensors. DOI:10.3390/s18113622.
  2. Rajkumar, M.N., Nithya, M. and HemaLatha, P. (2016) Overview of Vanet with its Features and Security Attacks. International Research Journal of Engineering and Technology (IRJET), 3(1), 137–142.
  3. Bassiony, I.S. and Salama, G. (2022) Detection approaches for position falsification attack in VANET. In: 13th International Conference on Electrical Engineering (ICEENG). DOI:10.1109/ICEENG49683.2022.9781915.
  4. Govindan, H., Jacob, L., Babu, A.V. (2011) Bit-based fairness in ieee802. 11p mac for vehicle-to-infrastructure networks. In: Proceedings of the 2011 international conference on Advanced Computing, Networking and Security. DOI:10.1007/978-3-642-29280-4_39.
  5. Azees, M., Vijayakumar, P. and Jegatha Deborah, L. (2016) Comprehensive survey on security services in vehicular ad-hoc networks. IET Intelligent Transport Systems Journal, 10(6), 379–388. DOI:10.1049/iet-its.2015.0072.
  6. Sumra, I.A., Ahmad, I., ab Manan, J.-L., Hasbullah, H. (2011) Behavior of attacker and some new possible attacks in vehicular ad hoc network (vanet). In: The 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2011, IEEE, 1–8.
  7. Bißmeyer, N., Njeukam, J., Petit, J., & Bayarou, K. M. (2012) Central misbehavior evaluation for VANETs based on mobility data plausibility. In: VANET '12: Proceedings of the ninth ACM international workshop on Vehicular inter-networking, systems, and applications, 73–82. https://doi.org/10.1145/2307888.2307902.
  8. Grover, J., Prajapati, N. K., Laxmi, V., & Gaur, M. S. (2011) Machine learning approach for multiple misbehavior detection in VANET. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22720-2_68.
  9. So, S., Sharma, P., & Petit, J. (2018) Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET. In: The 17th IEEE International Conference on Machine Learning and Applications (ICMLA). DOI: 10.1109/ICMLA.2018.00091.
  10. Sharma, P., Austin, D., & Liu, H. (2019) Attacks on machine learning: Adversarial examples in connected and autonomous vehicles. In: 2019 IEEE International Symposium on Technologies for Homeland Security (HST). DOI: 10.1109/HST47167.2019.9032989.
  11. Singh, P. K., Gupta, S., Vashistha, R., Nandi, S. K., & Nandi, S. (2019) Machine Learning Based Approach to Detect Position Falsification Attack in VANETs. In: Nandi, S., Jinwala, D., Singh, V., Laxmi, V., Gaur, M., Faruki, P. (eds) Security and Privacy. ISEA-ISAP 2019. Communications in Computer and Information Science, 939. Springer, Singapore. https://doi.org/10.1007/978-981-13-7561-3_13.
  12. So, S., Petit, J., & Starobinski, D. (2019) Physical layer plausibility checks for misbehavior detection in V2X networks. In: WiSec '19: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, 84–93. https://doi.org/10.1145/3317549.3323406.
  13. Kamel, J., Jemaa, I. B., Kaiser, A., Cantat, L., & Urien, P. (2019) Misbehavior detection in C-ITS: A comparative approach of local detection mechanism. In: 2019 IEEE Vehicular Networking Conference (VNC). DOI: 10.1109/VNC48660.2019.9062831.
  14. Gyawali, S., & Qian, Y. (2019) Misbehavior Detection using Machine Learning in Vehicular Communication Networks. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC). doi: 10.1109/ICC.2019.8761300.
  15. Hawlader, F., Boualouache, A., Faye, S., & Engel, T. (2021) Intelligent misbehavior detection system for detecting false position attacks in vehicular networks. In: 2021 IEEE International Conference on Communications Workshops (ICC Workshops). DOI: 10.1109/ICCWorkshops50388.2021.9473606.
  16. Gonçalves, F., Macedo, J., & Santos, A. (2021) An intelligent hierarchical security framework for VANETs. Information 12(11), 455. DOI:10.3390/info12110455.
  17. Sonker, A., & Gupta, R. (2021) A new procedure for misbehavior detection in vehicular Ad-Hoc networks using machine learning. In: International Journal of Electrical and Computer Engineering (IJECE), 11(3), 2535–2547. DOI:10.11591/ijece.v11i3.
  18. Amanullah, M. A., Chhetri, M. B., Loke, S. W., Doss, R., & BurSTADMA. (2022) Towards an Australian dataset for misbehaviour detection in the internet of vehicles. In: 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). DOI: 10.1109/PerComWorkshops53856.2022.9767505.
  19. Sharma, A., & Jaekel, A. (2022) Machine learning based misbehaviour detection in VANET using consecutive BSM approach. IEEE Open Journal of Vehicular Technology, (99), 1-1. DOI:10.1109/OJVT.2021.3138354.
  20. Ercan, S., Ayaida, M., & Messai, N. (2022) Misbehavior detection for position falsification attacks in VANETs using machine learning. In: The 2nd International Conference on Electronics and Communication Systems (ICECS), EEE Access Journal, (99), 1-1. http://dx.doi.org/10.1109/ACCESS.2021.3136706.
  21. Haydari, A., & Yilmaz, Y. (2018) Real-time detection and mitigation of DDoS attacks in intelligent transportation systems. In: 21st International Conference on Intelligent Transportation Systems (ITSC), 1–20. DOI: 10.1109/ITSC42983.2018.
  22. Raghuwanshi, V., & Jain, S. (2015) Denial of service attack in VANET: A survey. International Journal of Engineering Trends and Technology (IJETT), 28(1). DOI: 10.14445/22315381/IJETT-V28P204.
  23. Heijden, R. W., Lukaseder, T., & Kargl, F. (2018) VeReMi: A dataset for comparable evaluation of misbehavior detection in VANETs. In: ICC 2020-2020 IEEE International Conference on Communications (ICC). DOI:10.1109/ICC40277.2020.9149132.
  24. Codeca, L., Frank, R., Faye, S., & Engel, Th. (2017) Luxembourg SUMO traffic (LuST) scenario: traffic demand evaluation. IEEE Intelligent Transportation Systems Magazine, 9(2). DOI:10.1109/MITS.2017.2666585.
DOI: https://doi.org/10.2478/ttj-2024-0020 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 278 - 288
Published on: Jun 26, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ibrahim Bassiony, Sherif Hussein, Gouda Salama, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.