References
- Adnan, M. F., Ahmed, N., Ishraque, I., Al Amin, M. S. and Hasan, M. S. (2022) Traffic congestion prediction using deep convolutional neural networks: A color-coding approach. In: 2022 International Conference on Engineering and Emerging Technologies (ICEET), 1-5. IEEE. DOI: 10.1109/ICEET56468.2022.10007425.
- Asmaa, O., Mokhtar, K. and Abdelaziz, O. (2013) Road traffic density estimation using microscopic and macroscopic parameters. Image and Vision Computing, 31(11), 887-894. DOI: 10.1016/j.imavis.2013.09.006.
- Bull, A., & CEPAL, N. (2003) Traffic congestion: the problem and how to deal with It. ECLAC.
- Chan, A. B. and Vasconcelos, N. (2005) Classification and retrieval of traffic video using auto- regressive stochastic processes. In: IEEE Proceedings. Intelligent Vehicles Symposium, 771-776. IEEE. DOI: 10.1109/IVS.2005.1505198.
- Chan, A.B. and Vasconcelos, N. (2004) Efficient computation of the KL divergence between dynamic textures. technical report SVCL-TR2004-02, http://www.svcl.ucsd.edu/, November 2004.
- Chen, H. T., Tsai, L. W., Gu, H. Z., Lee, S. Y. and Lin, B. S. P. (2012) Traffic congestion classification for nighttime surveillance videos. In: 2012 IEEE International Conference on Multimedia and Expo Workshops, 169-174. IEEE. DOI: 10.1109/ICMEW.2012.36.
- Derpanis, K. G. and Wildes, R. P. (2011) Classification of traffic video based on a spatiotemporal orientation analysis. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), 606-613. IEEE. DOI: 10.1109/WACV.2011.5711560.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, Th., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929.
- Gonçalves, W. N., Machado, B. B. and Bruno, O. M. (2015) A complex network approach for dynamic texture recognition. Neurocomputing, 153, 211-220. DOI: 10.1016/j.neucom.2014.11.034.
- INRIX. (2022) INRIX Launches New Artificial Intelligence Traffic Solution - INRIX. Inrix. https://inrix.com/press-releases/inrix-launches-new-artificial-intelligence-traffic-solution/
- Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022) A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073.
- Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2022) Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s), 1-41. DOI: 10.1145/3505244.
- Luo, Z., Jodoin, P. M., Li, S. Z. and Su, S. Z. (2015) Traffic analysis without motion features. In: 2015 IEEE International Conference on Image Processing (ICIP), 3290-3294. IEEE. DOI: 10.1109/ICIP.2015.7351412.
- Luo, Z., Jodoin, P. M., Su, S. Z., Li, S. Z. and Larochelle, H. (2016) Traffic analytics with low-frame- rate videos. IEEE Transactions on Circuits and Systems for Video Technology, 28(4), 878-891. DOI: 10.1109/TCSVT.2016.2632439.
- Ramana, K., Srivastava, G., Kumar, M. R., Gadekallu, T. R., Lin, J. C. W., Alazab, M. and Iwendi, C. (2023) A vision transformer approach for traffic congestion prediction in urban areas. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2022.3233801.
- Riaz, A. and Khan, S. A. (2013) Traffic congestion classification using motion vector statistical features. In: Sixth International Conference on Machine Vision (ICMV 2013), 9067, 245-251. SPIE. DOI: 10.1117/12.2051463.
- Ribeiro, M. V. L., Samatelo, J. L. A., and Bazzan, A. L. C. (2020) A new microscopic approach to traffic flow classification using a convolutional neural network object detector and a multi- tracker algorithm. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2020.3040594.
- Sobral, A. L. O., Schnitman, L. and De Souza, F. (2013) Highway traffic congestion classification using holistic properties. In: 10th IASTED International Conference on Signal Processing, Pattern Recognition and Applications.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is all you need. Advances in neural information processing systems, 30, (NIPS 2017).
- Wang, X., Zeng, R., Zou, F., Liao, L. and Huang, F. (2023) STTF: An efficient transformer model for traffic congestion prediction. International Journal of Computational Intelligence Systems, 16(1), 2.