Have a personal or library account? Click to login
Efficient Road Traffic Video Congestion Classification Based on the Multi-Head Self-Attention Vision Transformer Model Cover

Efficient Road Traffic Video Congestion Classification Based on the Multi-Head Self-Attention Vision Transformer Model

Open Access
|Feb 2024

References

  1. Adnan, M. F., Ahmed, N., Ishraque, I., Al Amin, M. S. and Hasan, M. S. (2022) Traffic congestion prediction using deep convolutional neural networks: A color-coding approach. In: 2022 International Conference on Engineering and Emerging Technologies (ICEET), 1-5. IEEE. DOI: 10.1109/ICEET56468.2022.10007425.
  2. Asmaa, O., Mokhtar, K. and Abdelaziz, O. (2013) Road traffic density estimation using microscopic and macroscopic parameters. Image and Vision Computing, 31(11), 887-894. DOI: 10.1016/j.imavis.2013.09.006.
  3. Bull, A., & CEPAL, N. (2003) Traffic congestion: the problem and how to deal with It. ECLAC.
  4. Chan, A. B. and Vasconcelos, N. (2005) Classification and retrieval of traffic video using auto- regressive stochastic processes. In: IEEE Proceedings. Intelligent Vehicles Symposium, 771-776. IEEE. DOI: 10.1109/IVS.2005.1505198.
  5. Chan, A.B. and Vasconcelos, N. (2004) Efficient computation of the KL divergence between dynamic textures. technical report SVCL-TR2004-02, http://www.svcl.ucsd.edu/, November 2004.
  6. Chen, H. T., Tsai, L. W., Gu, H. Z., Lee, S. Y. and Lin, B. S. P. (2012) Traffic congestion classification for nighttime surveillance videos. In: 2012 IEEE International Conference on Multimedia and Expo Workshops, 169-174. IEEE. DOI: 10.1109/ICMEW.2012.36.
  7. Derpanis, K. G. and Wildes, R. P. (2011) Classification of traffic video based on a spatiotemporal orientation analysis. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), 606-613. IEEE. DOI: 10.1109/WACV.2011.5711560.
  8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, Th., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929.
  9. Gonçalves, W. N., Machado, B. B. and Bruno, O. M. (2015) A complex network approach for dynamic texture recognition. Neurocomputing, 153, 211-220. DOI: 10.1016/j.neucom.2014.11.034.
  10. INRIX. (2022) INRIX Launches New Artificial Intelligence Traffic Solution - INRIX. Inrix. https://inrix.com/press-releases/inrix-launches-new-artificial-intelligence-traffic-solution/
  11. Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022) A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073.
  12. Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2022) Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s), 1-41. DOI: 10.1145/3505244.
  13. Luo, Z., Jodoin, P. M., Li, S. Z. and Su, S. Z. (2015) Traffic analysis without motion features. In: 2015 IEEE International Conference on Image Processing (ICIP), 3290-3294. IEEE. DOI: 10.1109/ICIP.2015.7351412.
  14. Luo, Z., Jodoin, P. M., Su, S. Z., Li, S. Z. and Larochelle, H. (2016) Traffic analytics with low-frame- rate videos. IEEE Transactions on Circuits and Systems for Video Technology, 28(4), 878-891. DOI: 10.1109/TCSVT.2016.2632439.
  15. Ramana, K., Srivastava, G., Kumar, M. R., Gadekallu, T. R., Lin, J. C. W., Alazab, M. and Iwendi, C. (2023) A vision transformer approach for traffic congestion prediction in urban areas. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2022.3233801.
  16. Riaz, A. and Khan, S. A. (2013) Traffic congestion classification using motion vector statistical features. In: Sixth International Conference on Machine Vision (ICMV 2013), 9067, 245-251. SPIE. DOI: 10.1117/12.2051463.
  17. Ribeiro, M. V. L., Samatelo, J. L. A., and Bazzan, A. L. C. (2020) A new microscopic approach to traffic flow classification using a convolutional neural network object detector and a multi- tracker algorithm. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2020.3040594.
  18. Sobral, A. L. O., Schnitman, L. and De Souza, F. (2013) Highway traffic congestion classification using holistic properties. In: 10th IASTED International Conference on Signal Processing, Pattern Recognition and Applications.
  19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is all you need. Advances in neural information processing systems, 30, (NIPS 2017).
  20. Wang, X., Zeng, R., Zou, F., Liao, L. and Huang, F. (2023) STTF: An efficient transformer model for traffic congestion prediction. International Journal of Computational Intelligence Systems, 16(1), 2.
DOI: https://doi.org/10.2478/ttj-2024-0003 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 20 - 30
Published on: Feb 16, 2024
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sofiane Abdelkrim Khalladi, Asmâa Ouessai, Nadir Kamel Benamara, Mokhtar Keche, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.