Have a personal or library account? Click to login
Classification of the Condition of Pavement with the Use of Machine Learning Methods Cover

Classification of the Condition of Pavement with the Use of Machine Learning Methods

By: Paweł Tomiło  
Open Access
|Apr 2023

References

  1. Beilfuss, T., Kortmann, K.-P., Wielitzka, M., Hansen, C., & Ortmaier, T. (2020) Real-Time Classification of Road Type and Condition in Passenger Vehicles. 21st IFAC World Congress (Virtual) Berlin, Germany.
  2. Coadou, Y. (2013) Boosted decision trees and applications. EPJ Web of Conferences, 55. https://doi.org/10.1051/EPJCONF/20135502004
  3. Cutler, A., Cutler, D. R., & Stevens, J. R. (2012) Random Forests. Ensemble Machine Learning, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5
  4. Departament Infrastruktury. (2019). Informacja o wynikach kontroli. Zapewnienie należytego stanu technicznego nawierzchni dróg krajowych (ang. Information on the results of the inspection. Ensuring proper technical condition of national road surfaces). https://www.nik.gov.pl/plik/id,21157,vp,23789.pdf
  5. Doniec, R., Piaseczna, N., Li, F., Duraj, K., Pour, H. H., Grzegorzek, M., Mocny-Pachońska, K., & Tkacz, E. (2022) Classification of Roads and Types of Public Roads Using EOG Smart Glasses and an Algorithm Based on Machine Learning While Driving a Car. Electronics 2022, 11(18), 2960. https://doi.org/10.3390/ELECTRONICS11182960
  6. Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. Http://Dx.Doi.Org/10.1177/0278364913491297, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297
  7. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.48550/arxiv.1512.03385
  8. Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2017) Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8), 2011–2023. https://doi.org/10.48550/arxiv.1709.01507
  9. Kowalski, S., Opoka, K., Ciuła, J., Analysis, C. J., & Kowalski, S. (2022) Analysis of the end-of-life the front suspension beam of a vehicle. Eksploatacja i NiEzawodNosc-MaiNtENaNcE aNd REliability, 24(3), 3. https://doi.org/10.17531/ein.2022.3.6
  10. Lei, T., Mohamed, A. A., & Claudel, C. (2018) An IMU-based traffic and road condition monitoring system. HardwareX, e00045. https://doi.org/10.1016/j.ohx.2018.e00045
  11. Mosley, L. (2013). A balanced approach to the multi-class imbalance problem. https://doi.org/10.31274/ETD-180810-3375
  12. Radopoulou, S. C., & Brilakis, I. (2016) Improving Road Asset Condition Monitoring. Transportation Research Procedia, 14, 3004–3012. https://doi.org/10.1016/J.TRPRO.2016.05.436
  13. Rateke, T., Justen, K. A., & Wangenheim, A. von. (2019) Road surface classification with images captured from low-cost camera-road traversing knowledge (RTK) dataset. Revista de Informatica Teorica e Aplicada, 26(3), 50–64. https://doi.org/10.22456/2175-2745.91522
  14. Šabanovič, E., Žuraulis, V., Prentkovskis, O., & Skrickij, V. (2020) Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation. Sensors (Basel, Switzerland), 20(3). https://doi.org/10.3390/S20030612
  15. Shinzato, P. Y., dos Santos, T. C., Rosero, L. A., Ridel, D. A., Massera, C. M., Alencar, F., Batista, M. P., Hata, A. Y., Osório, F. S., & Wolf, D. F. (2016). CaRINA dataset: An emerging-country urban scenario benchmark for road detection systems. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 41–46. https://doi.org/10.1109/ITSC.2016.7795529
  16. STmicroelectronics. (2019) LSM6DSOX Datasheet. iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope. https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
  17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems, 2017-December, 5999–6009. https://doi.org/10.48550/arxiv.1706.03762
  18. Wang, S., Kodagoda, S., & Ranasinghe, R. (2012) Road Terrain Type Classification based on Laser Measurement System Data. Australasian Conference on Robotics and Automation, Victoria University of Wellington, New Zealand.
DOI: https://doi.org/10.2478/ttj-2023-0014 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 158 - 166
Published on: Apr 15, 2023
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Paweł Tomiło, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.