References
- Beilfuss, T., Kortmann, K.-P., Wielitzka, M., Hansen, C., & Ortmaier, T. (2020) Real-Time Classification of Road Type and Condition in Passenger Vehicles. 21st IFAC World Congress (Virtual) Berlin, Germany.
- Coadou, Y. (2013) Boosted decision trees and applications. EPJ Web of Conferences, 55. https://doi.org/10.1051/EPJCONF/20135502004
- Cutler, A., Cutler, D. R., & Stevens, J. R. (2012) Random Forests. Ensemble Machine Learning, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5
- Departament Infrastruktury. (2019). Informacja o wynikach kontroli. Zapewnienie należytego stanu technicznego nawierzchni dróg krajowych (ang. Information on the results of the inspection. Ensuring proper technical condition of national road surfaces). https://www.nik.gov.pl/plik/id,21157,vp,23789.pdf
- Doniec, R., Piaseczna, N., Li, F., Duraj, K., Pour, H. H., Grzegorzek, M., Mocny-Pachońska, K., & Tkacz, E. (2022) Classification of Roads and Types of Public Roads Using EOG Smart Glasses and an Algorithm Based on Machine Learning While Driving a Car. Electronics 2022, 11(18), 2960. https://doi.org/10.3390/ELECTRONICS11182960
- Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. Http://Dx.Doi.Org/10.1177/0278364913491297, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297
- He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.48550/arxiv.1512.03385
- Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2017) Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8), 2011–2023. https://doi.org/10.48550/arxiv.1709.01507
- Kowalski, S., Opoka, K., Ciuła, J., Analysis, C. J., & Kowalski, S. (2022) Analysis of the end-of-life the front suspension beam of a vehicle. Eksploatacja i NiEzawodNosc-MaiNtENaNcE aNd REliability, 24(3), 3. https://doi.org/10.17531/ein.2022.3.6
- Lei, T., Mohamed, A. A., & Claudel, C. (2018) An IMU-based traffic and road condition monitoring system. HardwareX, e00045. https://doi.org/10.1016/j.ohx.2018.e00045
- Mosley, L. (2013). A balanced approach to the multi-class imbalance problem. https://doi.org/10.31274/ETD-180810-3375
- Radopoulou, S. C., & Brilakis, I. (2016) Improving Road Asset Condition Monitoring. Transportation Research Procedia, 14, 3004–3012. https://doi.org/10.1016/J.TRPRO.2016.05.436
- Rateke, T., Justen, K. A., & Wangenheim, A. von. (2019) Road surface classification with images captured from low-cost camera-road traversing knowledge (RTK) dataset. Revista de Informatica Teorica e Aplicada, 26(3), 50–64. https://doi.org/10.22456/2175-2745.91522
- Šabanovič, E., Žuraulis, V., Prentkovskis, O., & Skrickij, V. (2020) Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation. Sensors (Basel, Switzerland), 20(3). https://doi.org/10.3390/S20030612
- Shinzato, P. Y., dos Santos, T. C., Rosero, L. A., Ridel, D. A., Massera, C. M., Alencar, F., Batista, M. P., Hata, A. Y., Osório, F. S., & Wolf, D. F. (2016). CaRINA dataset: An emerging-country urban scenario benchmark for road detection systems. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 41–46. https://doi.org/10.1109/ITSC.2016.7795529
- STmicroelectronics. (2019) LSM6DSOX Datasheet. iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope. https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems, 2017-December, 5999–6009. https://doi.org/10.48550/arxiv.1706.03762
- Wang, S., Kodagoda, S., & Ranasinghe, R. (2012) Road Terrain Type Classification based on Laser Measurement System Data. Australasian Conference on Robotics and Automation, Victoria University of Wellington, New Zealand.