Have a personal or library account? Click to login
Ego Vehicle Lane Detection and Key Point Determination Using Deep Convolutional Neural Networks and Inverse Projection Mapping Cover

Ego Vehicle Lane Detection and Key Point Determination Using Deep Convolutional Neural Networks and Inverse Projection Mapping

Open Access
|Apr 2023

References

  1. Singh, S. (2015) Critical reasons for crashes investigated in the national motor vehicle crash causation survey (No. DOT HS 812 115).Washington, DC: National Highway Traffic Safety Administration.
  2. Bellis, E., & Page, J. (2008) National motor vehicle crash causation survey (NMVCCS) SAS analytical users manual (No. HS-811 053).
  3. Gayko, J. E. (2012) Lane departure and lane keeping. Handbook of intelligent vehicles, 1, 689-708.
  4. Visvikis, C., Smith, T. L., Pitcher, M., & Smith, R. (2008) Study on lane departure warning and lane change assistant systems. Transport Research Laboratory Project Rpt PPR, 374, 1-128.
  5. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., & Van Gool, L. (2018) Towards endto-end lane detection: an instance segmentation approach. In: 2018 IEEE intelligent vehicles symposium (IV), Changshu, China, June 2018, 286-291.
  6. Yan, X., & Li, Y. A method of lane edge detection based on Canny algorithm. In: 2017 Chinese Automation Congress (CAC), China, October 2017, pp. 2120-2124.
  7. Oliveira, M., Santos, V., & Sappa, A. D. (2015) Multimodal inverse perspective mapping. Information Fusion, Information Fusion, 24, 108-121.
  8. Muthalagu, R., Bolimera, A., and Kalaichelvi, V. (2021) Vehicle lane markings segmentation and keypoint determination using deep convolutional neural networks. Multimedia Tools and Applications, 80(7), 11201-11215.
  9. Amaradi, P., Sriramoju, N., Dang, L., Tewolde, G.S. & Kwon, J. (2016) Lane following and obstacle detection techniques in autonomous driving vehicles. In: 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, North Dakota, May 2016, pp. 0674-0679.
  10. Xing, Y. et al. (2018) Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision, in IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 645-661, May 2018, doi: 10.1109/JAS.2018.7511063.
  11. Wang, J. Gao & Y. Yuan (2018) Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection, IEEE Transactions on Intelligent Transportation Systems, 19(1), 230-241, doi: 10.1109/TITS.2017.2749964.
  12. Ronneberger, O., Fischer P., & Brox T. (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, Munich, Germany, October 2015, pp. 234-241. Springer, Cham.
  13. Shelhamer, E., Long, J. & Darrell, T. (2017) Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi: 10.1109/TPAMI.2016.2572683.
  14. Badrinarayanan, V., Kendall, A. & Cipolla, R. (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
  15. He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, USA, June 2016, 770-778.
  16. The tuSimple lane challenge, github. (2018). GitHub. Retrieved from http://benchmark.tusimple.ai/
  17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017) Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
  18. Simonyan, K. & Zisserman, A. (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. 1-14.
  19. He, K., Zhang, X., Ren, S. & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, Santiago, Chile, December 2015, pp. 1026-1034.
  20. Bottou L. (2010) Largescale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT 2010, Paris, France, August 2010, pp. 177–186, Springer.
  21. Lucas, T., Rodrigo, B., Thiago, M. P., Claudine, B., Alberto, F. De Souza, & Thiago, O-S. (2020) PolyLaneNet: Lane Estimation via Deep Polynomial Regression. arXiv preprint arXiv: 2004.10924. 1-7.
  22. Pan, X., Shi, J., Luo, P., Wang, X., & Tang, X. (2018) Spatial as deep: Spatial CNN for traffic scene understanding. In: Association for the Advancement of Artificial Intelligence, New Orleans, Louisiana USA, February 2018, pp 1-8.
  23. Muthalagu, R., Bolimera, A. & Kalaichelvi, V. (2020) Lane detection technique based on perspective transformation and histogram analysis for self-driving cars. Computers & Electrical Engineering, Elseiver, 85, 106653, 1-17.
DOI: https://doi.org/10.2478/ttj-2023-0010 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 110 - 119
Published on: Apr 15, 2023
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Anudeepsekhar Bolimera, Raja Muthalagu, V. Kalaichelvi, Abhilasha Singh, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.