References
- Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S. (2016) Social lstm: Human trajectory prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–971.10.1109/CVPR.2016.110
- Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L. (2020) The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), 1929–1934. https://doi.org/10.1109/IV47402.2020.9304839.10.1109/IV47402.2020.9304839
- Cheng, H., Liao, W., Tang, X., Yang, M.Y., Sester, M., Rosenhahn, B. (2021) Exploring dynamic context for multi-path trajectory prediction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), 12795–12801. https://doi.org/10.1109/ICRA48506.2021.9562034.10.1109/ICRA48506.2021.9562034
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. https://doi.org/10.48550/ARXIV.2010.11929, https://arxiv.org/abs/2010.11929.
- Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A. (2018) Social gan: Socially acceptable trajectories with generative adversarial networks. https://doi.org/10.48550/ARXIV.1803.10892, https://arxiv.org/abs/1803.10892.10.1109/CVPR.2018.00240
- Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. Neural computation, 9, 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.10.1162/neco.1997.9.8.17359377276
- Ivanovic, B., Pavone, M. (2018) The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. https://doi.org/10.48550/ARXIV.1810.05993, https://arxiv.org/abs/1810.05993.10.1109/ICCV.2019.00246
- Jang, E., Gu, S., Poole, B. (2016) Categorical reparameterization with gumbel-softmax. https://doi.org/10.48550/ARXIV.1611.01144, https://arxiv.org/abs/1611.01144.
- Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H. (2016) Variational deep embedding: A generative approach to clustering. CoRR abs/1611.05148, http://arxiv.org/abs/1611.05148.
- Kingma, D.P., Ba, J. (2014) Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, https://doi.org/10.48550/ARXIV.1412.6980 https://arxiv.org/abs/1412.6980
- Kingma, D.P., Welling, M. (2013) Auto-encoding variational bayes. https://doi.org/10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114
- Krajewski, R., Moers, T., Bock, J., Vater, L., Eckstein, L. (2020) The round dataset: A drone dataset of road user trajectories at roundabouts in germany. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC45102.2020.9294728.10.1109/ITSC45102.2020.9294728
- Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M. (2017) Desire: Distant future prediction in dynamic scenes with interacting agents. https://doi.org/10.48550/ARXIV.1704.04394, https://arxiv.org/abs/1704.04394.10.1109/CVPR.2017.233
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. (2021) Swin transformer: Hierarchical vision transformer using shifted windows. https://doi.org/10.48550/ARXIV.2103.14030, https://arxiv.org/abs/2103.14030.10.1109/ICCV48922.2021.00986
- Maddison, C.J., Mnih, A., Teh, Y.W. (2016) The concrete distribution: A continuous relaxation of discrete random variables. https://doi.org/10.48550/ARXIV.1611.00712, https://arxiv.org/abs/1611.00712
- Schmidt, S., Assmann, T., Junge, L., H öfer, M., Kastner, K., Manoeva, D., Matthies, E., Riestock, M., Rolof, S., Sass, S., Schmidt, M., Seidel, M., Weißflog, J. (2021) Shared autonomous cargo bike fleets-approaches for a novel sustainable urban mobility solution.10.46720/F2021-ACM-124
- Sohn, K., Lee, H., Yan, X. (2015) Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, 28. Curran Associates, Inc., https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf AI-BASED TRAJECTORY FORECASTS 15.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is all you need. https://doi.org/10.48550/ARXIV.1706.03762, https://arxiv.org/abs/1706.03762.
- Xie, J., Girshick, R., Farhadi, A. (2015) Unsupervised deep embedding for clustering analysis. https://doi.org/10.48550/ARXIV.1511.06335, https://arxiv.org/abs/1511.06335
- Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X. (2020) Bi-trap: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation. https://doi.org/10.48550/ARXIV.2007.14558 https://arxiv.org/abs/2007.1455