Have a personal or library account? Click to login
Autonomous Cargo Bike Fleets – Approaches for AI-Based Trajectory Forecasts of Road Users Cover

Autonomous Cargo Bike Fleets – Approaches for AI-Based Trajectory Forecasts of Road Users

Open Access
|Feb 2023

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S. (2016) Social lstm: Human trajectory prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–971.10.1109/CVPR.2016.110
  2. Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L. (2020) The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), 1929–1934. https://doi.org/10.1109/IV47402.2020.9304839.10.1109/IV47402.2020.9304839
  3. Cheng, H., Liao, W., Tang, X., Yang, M.Y., Sester, M., Rosenhahn, B. (2021) Exploring dynamic context for multi-path trajectory prediction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), 12795–12801. https://doi.org/10.1109/ICRA48506.2021.9562034.10.1109/ICRA48506.2021.9562034
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. https://doi.org/10.48550/ARXIV.2010.11929, https://arxiv.org/abs/2010.11929.
  5. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A. (2018) Social gan: Socially acceptable trajectories with generative adversarial networks. https://doi.org/10.48550/ARXIV.1803.10892, https://arxiv.org/abs/1803.10892.10.1109/CVPR.2018.00240
  6. Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. Neural computation, 9, 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.10.1162/neco.1997.9.8.17359377276
  7. Ivanovic, B., Pavone, M. (2018) The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. https://doi.org/10.48550/ARXIV.1810.05993, https://arxiv.org/abs/1810.05993.10.1109/ICCV.2019.00246
  8. Jang, E., Gu, S., Poole, B. (2016) Categorical reparameterization with gumbel-softmax. https://doi.org/10.48550/ARXIV.1611.01144, https://arxiv.org/abs/1611.01144.
  9. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H. (2016) Variational deep embedding: A generative approach to clustering. CoRR abs/1611.05148, http://arxiv.org/abs/1611.05148.
  10. Kingma, D.P., Ba, J. (2014) Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, https://doi.org/10.48550/ARXIV.1412.6980 https://arxiv.org/abs/1412.6980
  11. Kingma, D.P., Welling, M. (2013) Auto-encoding variational bayes. https://doi.org/10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114
  12. Krajewski, R., Moers, T., Bock, J., Vater, L., Eckstein, L. (2020) The round dataset: A drone dataset of road user trajectories at roundabouts in germany. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC45102.2020.9294728.10.1109/ITSC45102.2020.9294728
  13. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M. (2017) Desire: Distant future prediction in dynamic scenes with interacting agents. https://doi.org/10.48550/ARXIV.1704.04394, https://arxiv.org/abs/1704.04394.10.1109/CVPR.2017.233
  14. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. (2021) Swin transformer: Hierarchical vision transformer using shifted windows. https://doi.org/10.48550/ARXIV.2103.14030, https://arxiv.org/abs/2103.14030.10.1109/ICCV48922.2021.00986
  15. Maddison, C.J., Mnih, A., Teh, Y.W. (2016) The concrete distribution: A continuous relaxation of discrete random variables. https://doi.org/10.48550/ARXIV.1611.00712, https://arxiv.org/abs/1611.00712
  16. Schmidt, S., Assmann, T., Junge, L., H öfer, M., Kastner, K., Manoeva, D., Matthies, E., Riestock, M., Rolof, S., Sass, S., Schmidt, M., Seidel, M., Weißflog, J. (2021) Shared autonomous cargo bike fleets-approaches for a novel sustainable urban mobility solution.10.46720/F2021-ACM-124
  17. Sohn, K., Lee, H., Yan, X. (2015) Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, 28. Curran Associates, Inc., https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf AI-BASED TRAJECTORY FORECASTS 15.
  18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is all you need. https://doi.org/10.48550/ARXIV.1706.03762, https://arxiv.org/abs/1706.03762.
  19. Xie, J., Girshick, R., Farhadi, A. (2015) Unsupervised deep embedding for clustering analysis. https://doi.org/10.48550/ARXIV.1511.06335, https://arxiv.org/abs/1511.06335
  20. Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X. (2020) Bi-trap: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation. https://doi.org/10.48550/ARXIV.2007.14558 https://arxiv.org/abs/2007.1455
DOI: https://doi.org/10.2478/ttj-2023-0006 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 55 - 64
Published on: Feb 28, 2023
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Stefan Sass, Markus Höfer, Michael Schmidt, Stephan Schmidt, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.