References
- Ata, A., Khan, M. A., Abbas, S., Ahmad, G., & Fatima, A. (2019) Modelling smart road traffic congestion control system using machine learning techniques. Neural Network World, 29(2), 99-110.10.14311/NNW.2019.29.008
- Patan, R., Suresh, K., Babu, M.R. (2016) Real-time smart traffic management system for smart cities by using the Internet of Things and big data. In: Emerging Technological Trends (ICETT), International Conference, IEEE, 1-7.
- Van Arem, B., Kirby, H. R., Van Der Vlist, M. J. M. and Whittaker, J. C. (1997) Recent advances and applications in the field of short-term traffic forecasting. Int. J. Forecasting, 13(1), 1–12.10.1016/S0169-2070(96)00695-4
- Schaller, B. (2017) UNSUSTAINABLE? The Growth of App-Based Ride Services and Traffic, Travel and the Future of New York City. http://schallerconsult.com/rideservices/unsustainable.pdf.
- Ben-Dor, G., Ben-Elia, E., & Benenson, I. (2019) Determining an Optimal Fleet Size for a Reliable Shared Automated Vehicle Ride-Sharing Service. Procedia Computer Science, 151, 878-883. https://doi.org/10.1016/j.procs.2019.04.12110.1016/j.procs.2019.04.121
- Ben-Dor, G., Ben-Elia, E. and Benenson, I. (2018) Assessing the impacts of dedicated bus lanes on urban traffic congestion and modal split with an agent-based model. Procedia computer science, 130, 824-829.10.1016/j.procs.2018.04.071
- Tsitsokas, D., Kouvelas, A. and Geroliminis, N. (2021) Modelling and optimization of dedicated bus lanes space allocation in large networks with dynamic congestion. Transportation Research Part C: Emerging Technologies, 127, 103082.10.1016/j.trc.2021.103082
- DeCorla-Souza, P. (2000) Making the Pricing of Currently Free Highway Lanes Acceptable to the Public. Transportation Quarterly, 54(3), 17-20.
- Chong, H. F. and Ng, Danny Wee Kiat (2016) Development of IoT device for traffic management system. In: 2016 IEEE Student Conference on Research and Development (SCOReD). IEEE, 2016.10.1109/SCORED.2016.7810059
- Rizwan, P., Suresh, K. and Babu, M. R. (2016) Real-time smart traffic management system for smart cities by using Internet of Things and big data. In: 2016 international conference on emerging technological trends (ICETT). IEEE, 2016.10.1109/ICETT.2016.7873660
- Mannion, P., Duggan, J. and Howley, E. (2015) Parallel reinforcement learning for traffic signal control. In: Procedia Computer Science, 52, 956-961.10.1016/j.procs.2015.05.172
- Lana, I. et al. (2018) Road traffic forecasting: Recent advances and new challenges. IEEE Intelligent Transportation Systems Magazine, 10(2), 93-109.10.1109/MITS.2018.2806634
- Firdous, A, and Niranjan, V. (2020) Smart Density Based Traffic Light System. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2020.10.1109/ICRITO48877.2020.9197940
- Patil, P. G. et al. (2020) Real Time Smart Traffic Control System. International Journal of Research in Engineering, Science and Management, 3(2), www.ijresm.com | ISSN (Online): 2581-5792.
- Hartanti, D., Rosida, N. A., and Siswipraptini, P. C. (2019) Optimization of smart traffic lights to prevent traffic congestion using fuzzy logic. TELKOMNIKA Telecommunication Computing Electronics and Control, 17(1), 320-327.10.12928/telkomnika.v17i1.10129
- Al-Abaid, S. A. F. (2020) A Smart Traffic Control System Using Image Processing: A Review. Journal of Southwest Jiaotong University, 55(1).10.35741/issn.0258-2724.55.1.31
- Haydari, A. and Yilmaz, Y. (2020) Deep reinforcement learning for intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems.
- Kaelbling, L. P., Littman, M. L. and Moore, A. W. (1996) Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.10.1613/jair.301
- Szepesvári, C. (2010) Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and machine learning, 4(1), 1-103.10.1007/978-3-031-01551-9
- Sutton, R. S., and Barto, A. (1999) Reinforcement learning. Journal of Cognitive Neuroscience, 11(1), 126-134.
- Sutton, R. S., and Barto, A. (2018) Reinforcement learning: An introduction. MIT press, 2018.
- Mannion, P., Duggan, J. and Howley, E. (2016) An experimental review of reinforcement learning algorithms for adaptive traffic signal control. Autonomic road transport support systems, 47-66.10.1007/978-3-319-25808-9_4
- Mannion, P., Duggan, J. and Howley, E. (2015) Parallel reinforcement learning for traffic signal control. In: Procedia Computer Science, 52, 956-961.10.1016/j.procs.2015.05.172
- Barzilay, O. Voloch, N. Hasgall, A. Lavi Steiner, O. Ahituv, N. (2018a) Traffic Control in a Smart Intersection by an Algorithm with Social Priorities. Contemporary Engineering Sciences, 11(31), 1499–1511.10.12988/ces.2018.83126
- Barzilay, O. Voloch, N. Hasgall, A. Lavi Steiner, O. (2018b) Real life applicative timing algorithm for a smart junction with social priorities and multiple parameters. In: 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 2018, 1-5. doi: 10.1109/ICSEE.2018.8646018
- Fine, Z., Brayer, E., Proshtisky, I., Barzilai, O., Voloch, N., & Steiner, O. L. (2019). Handling traffic loads in a smart junction by social priorities. In: 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), IEEE, 1-5.10.1109/COMCAS44984.2019.8958182
- Barzilay, O., Voloch, N., Giloni, A., Lavi Steiner, O. (2020) Auction based algorithm for a smart junction with social priorities. Transport and Telecommunication Journal, 21(2), 110-118. DOI: 10.2478/ttj-2020-0008.
- McKinsey (2013) Global Institute Infrastructure productivity: How to save $1 trillion a year. January 2013. Report: https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/infrastructure-productivity.
- Schaller, B. (2017) UNSUSTAINABLE? The Growth of App-Based Ride Services and Traffic, Travel and the Future of New York City. http://schallerconsult.com/rideservices/unsustainable.pdf
- Abbas, S., Khan, M. A., Athar, A., Shan, S. A., Saeed, A., & Alyas, T. (2022) Enabling smart city with intelligent congestion control using hops with a hybrid computational approach. The Computer Journal, 65(3), 484-494.10.1093/comjnl/bxaa068
- Bokaba, T., Doorsamy, W., & Paul, B. S. (2022) A Comparative Study of Ensemble Models for Predicting Road Traffic Congestion. Applied Sciences, 12(3), 1337.10.3390/app12031337
- Russo, A., Adler, M. W., & van Ommeren, J. N. (2022) Dedicated bus lanes, bus speed and traffic congestion in Rome. Transportation Research Part A: Policy and Practice, 160, 298-310.10.1016/j.tra.2022.04.001
- Boysen, N., Briskorn, D., Schwerdfeger, S., & Stephan, K. (2021) Optimizing carpool formation along high-occupancy vehicle lanes. European Journal of Operational Research, 293(3), 1097-1112.10.1016/j.ejor.2020.12.053
- DeCorla-Souza, P. T., Zahedian, S., Nohekhan, A., Nejad, M., & Erdogan, S. (2022) Exploratory Evaluation of Incentives to Increase High-Occupancy Vehicle Use on Priced Highway Facilities. Transportation Research Record, 03611981221076837.10.1177/03611981221076837
- Miletić, M., Ivanjko, E., Gregurić, M., & Kušić, K. (2022) A review of reinforcement learning applications in adaptive traffic signal control. IET Intelligent Transport Systems.10.1049/itr2.12208
- Noaeen, M., Naik, A., Goodman, L., Crebo, J., Abrar, T., Abad, Z. S. H., ... & Far, B. (2022) Reinforcement learning in urban network traffic signal control: A systematic literature review. Expert Systems with Applications, 116830.10.1016/j.eswa.2022.116830