References
- 1. AnyLogic. (2022a) Electric Vehicle Route Optimization. Available: https://www.anylogic.com/resources/case-studies/electric-vehicle-route-optimization-delivery-with-simulation-software
- 2. AnyLogic. (2022b) GE Electric Vehicle Transportation. Available: https://www.anylogic.com/ge-electric-vehicle-transportation-and-charging-network-analysis
- 3. Axhausen, K., Horni, A., Nagel, K. (2016) Introducing MATSim. In: Horni, A. et al. (eds.), Multi-Agent Transport Simulation MATSim. London: Ubiquity Press, 3-7. DOI. Available: https://doi.org/10.5334/baw.110.5334/baw.1
- 4. Bhardwaj, S., Mostofi, H. (2022) Technical and Business Aspects of Battery Electric Trucks – A Systematic Review. Future Transp., 2, 382-401. Available: https://doi.org/10.3390/futuretransp202002110.3390/futuretransp2020021
- 5. Cadence. (2022) The Use of the Monte Carlo Method. Available: https://resources.pcb.cadence.com/blog/2020-the-use-of-the-monte-carlo-method-insensitivity-analysis-and-its-advantages
- 6. FleetOwner. (2022) Available: https://www.fleetowner.com/home/contact/21704577/michael-roeth
- 7. Jahn, R. M., Syré, A., Grahle, A., Martins-Turner, K., Göhlich, D. (2021) Methodology for determining charging strategies for freight traffic vehicles based on traffic simulation results. Procedia Computer Science, 184, 656–661. DOI 10.1016/j.procs.2021.03.082
- 8. Lebeau, P., Macharis, C., Van Mierlo, J., Maes, G. (2013) Implementing electric vehicles in urban distribution: A discrete event simulation. World Electric Vehicle Journal, 6(1), 38-47. ISSN 2032-6653.10.1109/EVS.2013.6914770
- 9. Luo, Z., Lv, H., Fang, F., Zhao, Y., Liu, Y., Xiang, X., Yuan, X. (2018) Dynamic Taxi Service Planning by Minimizing Cruising Distance Without Passengers. In: IEEE Access, 6, 70005-70016. DOI: 10.1109/ACCESS.2018.2881419.
- 10. Martins-Turner, K., Grahle, A., Nagel, K., Göhlich, D. (2020) Electrification of Urban Freight Transport – a Case Study of the Food Retailing Industry. Procedia Computer Science, 170, 757-763. Available: https://doi.org/10.1016/j.procs.2020.03.15910.1016/j.procs.2020.03.159
- 11. MatSim. (2022) MATSim Documentation. Available: https://www.matsim.org/docs/
- 12. Qi, R., Yan, A., Li, S., Mishra, N., Raphael, D. (2020) MathWorks Math Modeling Challenge 2020: U.S. Big Rigs. Available: https://nmishra459.github.io/assets/M3MathChallengeElectricTrucking2020.pdf
- 13. Rees, D. G. (2001) Essential Statistics, 4th Edition. Chapman and Hall. CRC. ISBN 1-58488-007-4 (Section 9.5)
- 14. Renault. (2022) Renault trucks e-tech range simulator. Available: https://www.renault-trucks.co.uk/l/renault-trucks-e-tech-range-simulator
- 15. Taefi, T. T., Stütz, S., Fink, A. (2017) Assessing the cost-optimal mileage of medium-duty electric vehicles with a numeric simulation approach. Transportation Research Part D: Transport and Environment, 56, 271-285. Available: https://doi.org/10.1016/j.trd.2017.08.01510.1016/j.trd.2017.08.015
- 16. Tolujevs, J., Shedenov, U., Askarov, G. (2018) Investigation of Road Transport Enterprise Functioning on the Basis of System Dynamics. Transport and Telecommunication, 19(1), 1-9. DOI 10.2478/ttj-2018-0001
- 17. Wang, M., Thoben, K.-D., Bernardo, M., Daudi, M. (2018) Diversity in Employment of Electric Commercial Vehicles in Urban Freight Transport: A Literature Review. Logistics Research, 11, 10. DOI:10.23773/2018_10