Have a personal or library account? Click to login
Smartphone-Based Recognition of Access Trip Phase to Public Transport Stops Via Machine Learning Models Cover

Smartphone-Based Recognition of Access Trip Phase to Public Transport Stops Via Machine Learning Models

Open Access
|Nov 2022

References

  1. 1. Andrew, Alex M. (2001) An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Kybernetes.
  2. 2. Asci, Guven, and Guvensan, M. Amac. (2019) A Novel Input Set for LSTM-Based Transport Mode Detection. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2019, 107–12. DOI: 10.1109/PERCOMW.2019.8730799.
  3. 3. Axhausen, Kay W., Schönfelder, Stefan, Wolf, Jean, Oliveira, Marcelo and Samaga, Ute. (2003) 80 Weeks of GPS-Traces: Approaches to Enriching the Trip Information. Arbeitsberichte Verkehrs-Und Raumplanung, 178.
  4. 4. Breiman, L., Friedman, J., Olshen, R. and C. Stone. (1984) Classification and Regression Trees–Crc Press. Boca Raton, Florida.
  5. 5. Carpineti, C., Lomonaco, V., Bedogni, L., di Felice, M. and Bononi, L. (2018) Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, 367–72. DOI: 10.1109/PERCOMW.2018.8480119.
  6. 6. Chia, Jason, Lee, Jinwoo and Kamruzzaman, M. D. (2016) Walking to Public Transit: Exploring Variations by Socioeconomic Status, 10(9), 805–14. DOI: 10.1080/15568318.2016.1156792.
  7. 7. Dabiri, Sina, and Heaslip, Kevin. (2018) Inferring Transportation Modes from GPS Trajectories Using a Convolutional Neural Network. Transportation Research Part C: Emerging Technologies, 86, 360–371. DOI: 10.1016/J.TRC.2017.11.021.
  8. 8. Devaul, Richard W., and Dunn, Steve. (2001) Real-Time Motion Classification for Wearable Computing Applications.
  9. 9. Efthymiou, Alexandros, Barmpounakis, Emmanouil N., Efthymiou, Dimitrios and Vlahogianni, Eleni I. (2019) Transportation Mode Detection from Low-Power Smartphone Sensors Using Tree-Based Ensembles. Journal of Big Data Analytics in Transportation 2019, 1(1), 57–69. DOI: 10.1007/S42421-019-00004-W.
  10. 10. El-Geneidy, Ahmed, Grimsrud, Michael, Wasfi, Rania, Tétreault, Paul and Surprenant-Legault, Julien. (2014) New Evidence on Walking Distances to Transit Stops: Identifying Redundancies and Gaps Using Variable Service Areas. Transportation, 41(1), 193–210. DOI: 10.1007/S11116-013-9508-Z/FIGURES/4.
  11. 11. Erkan, Uğur, Gökrem, Levent and Enginoğlu, Serdar. (2018) Different Applied Median Filter in Salt and Pepper Noise. Computers & Electrical Engineering, 70, 789–798. DOI: 10.1016/J.COMPELECENG.2018.01.019.
  12. 12. Ferreira, Paulo, Zavgorodnii, Constantin and Veiga, Luís. (2020) EdgeTrans - Edge Transport Mode Detection. Pervasive and Mobile Computing, 69, 101268. DOI: 10.1016/J.PMCJ.2020.101268.
  13. 13. He, Jinliao, Zhang, Ruozhu, Huang, Xianjin and Xi, Guangliang. (2018) Walking Access Distance of Metro Passengers and Relationship with Demographic Characteristics: A Case Study of Nanjing Metro. Chinese Geographical Science 2018, 28(4), 612–623. DOI: 10.1007/S11769-018-0970-6.
  14. 14. Ho, Tin Kam. (1995) Random Decision Forests. In: Proceedings of 3rd international conference on document analysis and recognition, 1, 278–282.
  15. 15. Ioffe, Sergey, and Szegedy, Christian. (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: International conference on machine learning, 448–56. PMLR.
  16. 16. Jiang, Xiang, de Souza, Erico N., Pesaranghader, Ahmad, Hu, Baifan, Silver, Daniel L. and Matwin, Stan. (2017) TrajectoryNet: An Embedded GPS Trajectory Representation for Point-Based Classification Using Recurrent Neural Networks’. Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering, CASCON 2017, 9, 192–200. DOI: 10.48550/arxiv.1705.02636.
  17. 17. Khan, Inayat, Khusro, Shah, Ali, Shaukat and Ahmad, Jamil. (2016) Sensors Are Power Hungry: An Investigation of Smartphone Sensors Impact on Battery Power from Lifelogging Perspective’. Bahria University Journal of Information & Communication Technologies (BUJICT), 9(2).
  18. 18. Liang, Xiaoyuan, and Wang, Guiling. (2017) A Convolutional Neural Network for Transportation Mode Detection Based on Smartphone Platform. Proceedings – 14th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2017, 338–342. DOI: 10.1109/MASS.2017.81.
  19. 19. Lin, Guifang, and Shen, Wei. (2018) Research on Convolutional Neural Network Based on Improved Relu Piecewise Activation Function. Procedia Computer Science, 131, 977–984. DOI: 10.1016/J.PROCS.2018.04.239.
  20. 20. Lorintiu, Oana, and Vassilev, Andrea. (2016) Transportation Mode Recognition Based on Smartphone Embedded Sensors for Carbon Footprint Estimation. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 0, 1976–1981. DOI: 10.1109/ITSC.2016.7795875.
  21. 21. Manzoni, Vincenzo, Maniloff, Diego, Kloeckl, Kristian and Ratti, Carlo. (2010) Transportation Mode Identification and Real-Time CO2 Emission Estimation Using Smartphones. SENSEable City Lab, Massachusetts Institute of Technology, Nd.
  22. 22. Mucherino, Antonio, Papajorgji, Petraq J. and Pardalos, Panos M. (2009) K-Nearest Neighbor Classification. Data mining in agriculture, 83–106. Springer.10.1007/978-0-387-88615-2_4
  23. 23. Muller, Ian Anderson Henk. (2006) Practical Activity Recognition Using GSM Data. In: Proceedings of the 5th International Semantic Web Conference (ISWC). Athens, 1. Citeseer.
  24. 24. Nham, Ben, Siangliulue, Kanya and Yeung, Serena. (2008) Predicting Mode of Transport from Iphone Accelerometer Data. Machine Learning Final Projects, Stanford University.
  25. 25. Nygaard, Magnus Frestad. (2016) Waiting Time Strategy for Public Transport Passengers. 61.
  26. 26. Priscoli, Francesco Delli, Giuseppi, Alessandro and Lisi, Federico. (2020) Automatic Transportation Mode Recognition on Smartphone Data Based on Deep Neural Networks. Sensors 2020, 20(24), 7228. DOI: 10.3390/S20247228.
  27. 27. Quintella, Carlos Alvaro De M. S., Andrade, Leila C. V. and Campos, Carlos Alberto v. (2016) Detecting the Transportation Mode for Context-Aware Systems Using Smartphones. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2261–2266. DOI: 10.1109/ITSC.2016.7795921.
  28. 28. Reddy, Sasank, Mun, Min, Burke, Jeff, Estrin, Deborah, Hansen, Mark and Srivastava, Mani. (2010) Using Mobile Phones to Determine Transportation Modes. ACM Transactions on Sensor Networks (TOSN), 6(2). DOI: 10.1145/1689239.1689243.
  29. 29. Scherer, Dominik, Müller, Andreas and Behnke, Sven. (2010) Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: International conference on artificial neural networks, 92–101. Springer.10.1007/978-3-642-15825-4_10
  30. 30. Sokolova, Marina, and Lapalme, Guy. (2009) A Systematic Analysis of Performance Measures for Classification Tasks. Information Processing & Management, 45(4), 427–37.10.1016/j.ipm.2009.03.002
  31. 31. Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya and Salakhutdinov, Ruslan. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
  32. 32. Tennøy, Aud, Knapskog, Marianne and Wolday, Fitwi. (2022) Walking Distances to Public Transport in Smaller and Larger Norwegian Cities. Transportation Research Part D: Transport and Environment, 103, 103169. DOI: 10.1016/J.TRD.2022.103169.
  33. 33. Voss, Christine, Winters, Meghan, Frazer, Amanda and McKay, Heather. (2015) School-Travel by Public Transit: Rethinking Active Transportation. Preventive Medicine Reports, 2, 65–70. DOI: 10.1016/J.PMEDR.2015.01.004.471683526793430
  34. 34. Wang, Shuangquan, Chen, Canfeng and Ma, Jian. (2010) Accelerometer Based Transportation Mode Recognition on Mobile Phones. APWCS 2010 - 2010 Asia-Pacific Conference on Wearable Computing Systems, 44–46. DOI: 10.1109/APWCS.2010.18.
  35. 35. Zhao, Hong, Hou, Chunning, Alrobassy, Hala and Zeng, Xiangyan. (2019) Recognition of Transportation State by Smartphone Sensors Using Deep Bi-LSTM Neural Network. Journal of Computer Networks and Communications. doi: 10.1155/2019/4967261.
  36. 36. Zheng, Yu, Li, Quannan, Chen, Yukun, Xie, Xing, and Wei Ying Ma. (2008) Understanding Mobility Based on GPS Data. UbiComp 2008 - Proceedings of the 10th International Conference on Ubiquitous Computing, 312–321. DOI: 10.1145/1409635.1409677.
  37. 37. Zuo, Ting, Wei, Heng and Rohne, Andrew. (2018) Determining Transit Service Coverage by Non-Motorized Accessibility to Transit: Case Study of Applying GPS Data in Cincinnati Metropolitan Area. Journal of Transport Geography, 67, 1–11. DOI: 10.1016/J.JTRANGEO.2018.01.002.
DOI: https://doi.org/10.2478/ttj-2022-0022 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 273 - 283
Published on: Nov 16, 2022
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Seyed Hassan Hosseini, Guido Gentile, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.