Have a personal or library account? Click to login
Research of an Influence of a Traffic Flow Movement Intensity Change on the Possibility of Nonstop Passage of the Traffic Lights Objects Cover

Research of an Influence of a Traffic Flow Movement Intensity Change on the Possibility of Nonstop Passage of the Traffic Lights Objects

Open Access
|Apr 2022

References

  1. 1. Anderson, M. L. (2013) Subways, strikes, and slowdowns: the impacts of public transit on traffic congestion, NBER Working Paper, 18757, 48 p. DOI: 10.3386/w18757.10.3386/w18757
  2. 2. Archer, J. (2005) Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: a study of urban and suburban intersections. Doctoral Dissertation. KTH Royal Institute of Technology, Sweden, 254 p.
  3. 3. Bartuška, L., Stopka, O., Ližbetin, J. (2015) Methodology for Determining the Traffic Volumes on Urban Roads in the Czech Republic. In: Proceedings of 19th International Conference: Transport Means 2015, 21–22 October 2015, Kaunas, Lithuania.
  4. 4. Ben-Dor, G., Ben-Elia, E., Benenson, I. (2018) Assessing the impacts of dedicated bus lanes on urban traffic congestion and modal split with an agent-based model. Procedia Computer Science, 130, 824–829. DOI: 10.1016/j.procs.2018.04.071.10.1016/j.procs.2018.04.071
  5. 5. Chandra, S., Kumar, U. (2003) Effect of lane width on capacity under mixed traffic conditions in India. Journal of Transportation Engineering, 129(2), 155–160. DOI: 10.1061/(ASCE)0733-947X(2003)129:2(155).10.1061/(ASCE)0733-947X(2003)129:2(155)
  6. 6. Cools, M., Moons, E., Wets, G. (2010) Assessing the impact of weather on traffic intensity. Weather, Climate, and Society, 2, 60–68. DOI: 10.1175/2009WCAS1014.1.10.1175/2009WCAS1014.1
  7. 7. Dzyura, V. (2016) Ways of improvement of the city road network functioning. Journal of Sustainable Development of Transport and Logistics, 1(1), 11–15. DOI: 10.14254/jsdtl.2016.1-1.2.10.14254/jsdtl.2016.1-1.2
  8. 8. Falcocchio, J. C., Levinson, H. S. (2015) Road Traffic Congestion: A Concise Guide. Springer. DOI: 10.1007/978-3-319-15165-6.10.1007/978-3-319-15165-6
  9. 9. Guadamuz, R., Tang, H., Yu, Z., Guler, S. I., Gayah, V. V. (2021) Green time usage metrics on signalized intersections and arterials using high-resolution traffic data. International Journal of Transportation Science and Technology, in press. DOI: 10.1016/j.ijtst.2021.06.006.10.1016/j.ijtst.2021.06.006
  10. 10. He, X., Liu, H. X., Liu, X. (2015) Optimal vehicle speed trajectory on a signalized arterial with consideration of queue. Transportation Research Part C: Emerging Technologies, 61, 106–120. DOI: 10.1016/j.trc.2015.11.001.10.1016/j.trc.2015.11.001
  11. 11. Jiang, H., Hu, J., An, S., Wang, M., Park, B. B. (2017) Eco approaching at an isolated signalized intersection under partially connected and automated vehicles environment. Transportation Research Part C: Emerging Technologies, 79, 290–307. DOI: 10.1016/j.trc.2017.04.001.10.1016/j.trc.2017.04.001
  12. 12. Jiang, J., Astolfi, A., Parisini, T. (2021) Robust traffic wave damping via shared control. Transportation Research Part C: Emerging Technologies, 128, id. 103110. DOI: 10.1016/j.trc.2021.103110.10.1016/j.trc.2021.103110
  13. 13. Johansson, G., Rumar, K. (1971) Drivers’ brake reaction times. Human Factors: The Journal of the Human Factors and Ergonomics Society, 13(1), 23–27. DOI: 10.1177/001872087101300104.10.1177/0018720871013001045542208
  14. 14. Lindley, J. A. (1987) Urban freeway congestion: quantification of the problem and effectiveness of potential solutions. ITE Journal, 57(1), 27–32.
  15. 15. Lu, Q., Tettamanti, T., Hörcher, D, Varga, I. (2020) The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation. Transportation Letters: The International Journal of Transportation Research, 12(8), 540–549. DOI: 10.1080/19427867.2019.1662561.10.1080/19427867.2019.1662561
  16. 16. Mahler, G., Vahidi, A. (2012) Reducing idling at red lights based on probabilistic prediction of traffic signal timings. In: 2012 American Control Conference (ACC), 27–29 June 2012, Montreal, QC, Canada, 6557–6562. DOI: 10.1109/ACC.2012.6314942.10.1109/ACC.2012.6314942
  17. 17. Mazyliuk, P. (2019) Development of a method of rational passage of the regulated road sections by the vehicles. Lutsk National Technical University, Ukraine.
  18. 18. Mazyliuk, P. (2018) Technical development of the method of non-stop travel of traffic lights. Bulletin of BrSTU, 4(112), 76–78.
  19. 19. Metz, D. (2018) Developing policy for urban autonomous vehicles: impact on congestion. Urban Science, 2(2), 33. DOI: 10.3390/urbansci2020033.10.3390/urbansci2020033
  20. 20. Mintsis, E., Vlahogianni, E. I., Mitsakis, E., Ozkul, S. (2021) Enhanced speed advice for connected vehicles in the proximity of signalized intersections. European Transport Research Review, 13, id. 2. DOI: 10.1186/s12544-020-00458-y.10.1186/s12544-020-00458-y
  21. 21. Nguyen-Phuoc, D. Q., Currie, G., De Gruyter, C., Young, W. (2018a) How do public transport users adjust their travel behaviour if public transport ceases? A qualitative study. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 1–14. DOI: 10.1016/j.trf.2018.01.009.10.1016/j.trf.2018.01.009
  22. 22. Nguyen-Phuoc, D. Q., Currie, G., De Gruyter, C., Young, W. (2018b) Transit user reactions to major service withdrawal – a behavioural study. Transport Policy, 64, 29–37. DOI: 10.1016/j.tranpol.2018.01.004.10.1016/j.tranpol.2018.01.004
  23. 23. Nguyen-Phuoc, D. Q., Young, W., Currie, G., De Gruyter, C. (2020) Traffic congestion relief associated with public transport: state-of-the-art. Public Transport, 12, 455–481. DOI: 10.1007/s12469-020-00231-3.10.1007/s12469-020-00231-3
  24. 24. Pavkova, K., Currie, G., Delbosc, A. (2016) New methods exploring urban traffic congestion using Lorenz and concentration curves. In: Australasian Transport Research Forum 2016, 16–18 November 2016, Melbourne, Australia.
  25. 25. Pnevmatikou, A. M., Karlaftis, M. G., Kepaptsoglou, K. (2015) Metro service disruptions: how do people choose to travel? Transportation, 42, 933–949. DOI: 10.1007/s11116-015-9656-4.10.1007/s11116-015-9656-4
  26. 26. Rajak, B., Mallick, S., Kushwaha, D. S. (2020) Creating a dynamic real time green corridor and assessing its impact on normal traffic flow. Procedia Computer Science, 171, 2–11. DOI: 10.1016/j.procs.2020.04.002.10.1016/j.procs.2020.04.002
  27. 27. Rubin, T. A., Mansour, F. (2013) Transit utilization and traffic congestion: is there a connection? Policy Study, 427, 144. Reason Foundation, Los Angeles, CA, US.
  28. 28. Shramenko, N., Muzylyov, D., Shramenko, V., Mazyliuk P. (2020) Directions for quality assurance of specialists training in logistics and transport spheres from a competence approach perspective. Lecture Notes in Networks and Systems, 128, 605–611. DOI: 10.1007/978-3-030-46817-0_70.10.1007/978-3-030-46817-0_70
  29. 29. Sitovsky, O., Mazyliuk, P. (2018) The system of display of the recommended mode of movement of the vehicle. Ukrainian Patent UA 123153, G08G1 1/0968.
  30. 30. Sitovsky, O., Mazyliuk, P., Velyky, O. (2018) Computer Program – System of Display of the Recommended Mode of Movement of the Vehicle, A. C. 78903 UA, Ukraine.
  31. 31. Török, J., Kertész, J. (1996) The green wave model of two-dimensional traffic: transitions in the flow properties and in the geometry of the traffic jam. Physica A: Statistical Mechanics and its Applications, 231(4), 515–533. DOI: 10.1016/0378-4371(96)00144-6.10.1016/0378-4371(96)00144-6
  32. 32. Zhang, J., Shang, H., Li, X., Yao, Y. (2020) An integrated arterial coordinated control model considering green wave on branch roads and pedestrian crossing time at intersections. Journal of Management Science and Engineering, 5(4), 303–317. DOI: 10.1016/j.jmse.2020.09.004.10.1016/j.jmse.2020.09.004
  33. 33. Zhang, Y., Smirnova, M. N., Ma, J., Smirnov, N. N., Zhu, Z. (2021) Tunnel effects on ring road traffic flow based on an urgent-gentle class traffic model. Theoretical and Applied Mechanics Letters, 11(4), id. 100283, DOI: 10.1016/j.taml.2021.100283.10.1016/j.taml.2021.100283
DOI: https://doi.org/10.2478/ttj-2022-0012 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 142 - 150
Published on: Apr 30, 2022
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Pavlo Mazyliuk, Oleg Sitovskyi, Olegas Prentkovskis, Valerii Dembitskyi, Igor Murovanyi, Yurii Bulik, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.