Have a personal or library account? Click to login
Development of Reliable Models of Signal-Controlled Intersections Cover

Development of Reliable Models of Signal-Controlled Intersections

Open Access
|Nov 2021

References

  1. 1. Aleko, D.R., Djahel, S. (2020) An efficient adaptive traffic light control system for urban road traffic congestion reduction in smart cities. Information (Switzerland), 11(2) paper 119. DOI: 10.3390/info11020119.10.3390/info11020119
  2. 2. Barlović, R., Huisinga, T., Schadschneider, A., Schreckenberg, M. (2005) Adaptive traffic light control in the ChSch model for city traffic. In: Proceedings of the 5th International Workshop on Traffic and Granular Flow, Delft, October 2003. Springer Berlin Heidelberg, 331-336. DOI: 10.1007/3-540-28091-x_32.10.1007/3-540-28091-X_32
  3. 3. Bodenheimer, R., Eckhoff, D., German, R. (2015) GLOSA for adaptive traffic lights: Methods and evaluation. In: Proceedings of the 7th International Workshop on Reliable Networks Design and Modeling, Munich, October 2015, paper 7325247, 320-328. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/RNDM.2015.7325247.10.1109/RNDM.2015.7325247
  4. 4. Buch, N., Velastin, S.A., Orwell, J. (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems, 12, 920–939. DOI: 10.1109/TITS.2011.2119372.10.1109/TITS.2011.2119372
  5. 5. Clara Fang, F., Pham, C.V. (2019) An intelligent traffic signal control system based on fuzzy theory. In: Proceedings of the 19th COTA International Conference of Transportation Professionals, Nanjing, July 2019, 3020-3031. American Society of Civil Engineers. DOI: 10.1061/9780784482292.26110.1061/9780784482292.261
  6. 6. Delavarian, M., Marouzi, O.R., Hassanpour, H., Parizi, R.M., Khan, M.S. (2020) Multi-camera multiple vehicle tracking in urban intersections based on multilayer graphs. IET Intelligent Transport Systems, 14(12), 1673-1690. DOI: 10.1049/iet-its.2020.008610.1049/iet-its.2020.0086
  7. 7. Ding, J.M., Wang, C.H. (2009) Optimizing signal controls for urban mixed use transport arterial. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 30(12), 1404-1408. DOI: 10.3969/j.issn.1006-7043.2009.12.011.
  8. 8. Djuana, E., Rahardjo, K., Gozali, F., Tan, S., Rambung, R., Adrian, D. (2018) Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application. In: Proceedings of the 4th International Seminar on Sustainable Urban Development, Jakarta, August, 106(1), paper 012031. Institute of Physics Publishing.10.1088/1755-1315/106/1/012031
  9. 9. Do, L.N.N., Taherifar, N., Vu, H.L. (2019) Survey of neural network-based models for short-term traffic state prediction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(1), paper e1285. DOI: 10.1002/widm.1285.10.1002/widm.1285
  10. 10. El-Khoreby, M.A., Abu-Bakar, S.A.R., Mokji, M.M., Omar, S.N. (2020) Performance Comparison between SVM and K-Means for Vehicle Counting. In: Proceedings of the Sustainable and Integrated Engineering International Conference, Putrajaya, December 2019, 884(1), paper 012077. IOP Publishing Ltd. DOI: 10.1088/1757-899X/884/1/012077.10.1088/1757-899X/884/1/012077
  11. 11. Garg, K., Ramakrishnan, N., Prakash, A., Srikanthan, T. (2020) Rapid and robust background modeling technique for low-cost road traffic surveillance systems. IEEE Transactions on Intelligent Transportation Systems, 21(5), paper 8725944, 2204-2215. DOI: 10.1109/TITS.2019.2917560.10.1109/TITS.2019.2917560
  12. 12. Kapski, D., Kasyanik, V., Lobashov, O., Volynets, A., Kaptsevich, O., Galkin, A. (2019) Estimating the parameters of traffic flows on the basis of processing of localization data on the movement of vehicles. Communications – Scientific Letters of the University of Zilina, 21(2), 89-99. DOI: https://doi.org/10.26552/com.C.2019.2.89-99.10.26552/com.C.2019.2.89-99
  13. 13. Kazhaev, A., Almetova, Z., Shepelev, V., Shubenkova, K. (2018) Modelling urban route transport network parameters with traffic, demand and infrastructural limitations being considered. In: Proceedings of the 3rd International Conference on Sustainable, Moscow, May 2018, 177(1), paper 012018. Institute of Physics Publishing. DOI:10.1088/1755-1315/177/1/012018/
  14. 14. Kedia, A.S., Saw, K.B., Katti, B.K. (2015) Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city. Transport, 30(3), 286-293. DOI: 10.3846/16484142.2015.1081279.10.3846/16484142.2015.1081279
  15. 15. Kwatirayo, S., Almhana, J., Liu, Z. (2013) Optimizing intersection traffic flow using VANET. In: Proceedings of the IEEE International Conference on Sensing, Communications and Networking, New Orleans, June 2013, paper 6644993, 260-262. IEEE Computer Society. DOI: 10.1109/SAHCN.2013.6644993.10.1109/SAHCN.2013.6644993
  16. 16. Lian, J., Zhang, J., Gan, T., Jiang, S. (2018) Vehicle type classification using hierarchical classifiers. Journal of Physics: Conference Series, 1069(1), paper 012099. DOI: 10.1088/1742-6596/1069/1/012099.10.1088/1742-6596/1069/1/012099
  17. 17. Lin, H., Aye, K.M., Tun, H.M., Theingi, Naing, Z.M. (2008) Design and construction of intelligent traffic light control system using fuzzy logic. In: Proceedings of the International Conference on Power Control and Optimization, Chiang Mai, July, paper 1052, 237-239. AIP Publishing. DOI: 10.1063/1.3008674.10.1063/1.3008674
  18. 18. Luo, X., Li, D., Yang, Y., Zhang, S. (2019) Spatiotemporal traffic flow prediction with KNN and LSTM. Journal of Advanced Transportation, paper 4145353. DOI: 10.1155/2019/4145353.10.1155/2019/4145353
  19. 19. Lyapin, S., Rizaeva, Y., Kadasev, D., Voronin, N. (2019) Application of simulation modelling to improve the functioning of the module of intelligent transport and logistics system. In: Proceedings of the 21st International Conference “Complex Systems: Control and Modeling Problems”, Samara, paper 8976553, 143-147. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/CSCMP45713.2019.8976553.10.1109/CSCMP45713.2019.8976553
  20. 20. Peppa, M.V., Bell, D., Komar, T., Xiao, W. (2018) Urban traffic flow analysis based on deep learning car detection from cctv image series. In: Proceedings of the ISPRS TC IV Mid-Term Symposium on 3D Spatial Information Science – The Engine of Change, Delft, October 2018, 42(4), 565-572. International Society for Photogrammetry and Remote Sensing. DOI: 10.5194/isprs-archives-XLII-4-499-2018.10.5194/isprs-archives-XLII-4-499-2018
  21. 21. Peppa, M.V., Komar, T., Xiao, W., James, P., Robson, C., Xing, J., Barr, S. (2021) Towards an endto-end framework of CCTV-based urban traffic volume detection and prediction. Sensors (Switzerland), 21(2), paper 629, 1-23. DOI: 10.3390/s21020629.10.3390/s21020629783099033477471
  22. 22. Prasad, D., Kapadni, K., Gadpal, A., Visave, M., Sultanpure, K. (2019) HOG, LBP and SVM based Traffic Density Estimation at Intersection. In: Proceedings of the 2nd IEEE Pune Section International Conference, MIT World Peace University-Pune, India, paper 9105731. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/PuneCon46936.2019.9105731.10.1109/PuneCon46936.2019.9105731
  23. 23. Protschky, V., Wiesner, K., Feit, S. (2014) Adaptive traffic light prediction via Kalman filtering. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, June 2014, paper 6856394, 151-157. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/IVS.2014.6856394.10.1109/IVS.2014.6856394
  24. 24. Pulugurta, S., Madhu, E., Kayitha, R. (2015) Fuzzy logic-based travel demand model to simulate public transport policies. Journal of Urban Planning and Development, 141(4), paper 04014044. DOI: 10.1061/(ASCE)UP.1943-5444.0000261.10.1061/(ASCE)UP.1943-5444.0000261
  25. 25. Rida, N., Ouadoud, M., Hasbi, A., Chebli, S. (2018) Adaptive traffic light control system using wireless sensors networks. In: Proceedings of the 5th International Congress on Information Science and Technology, Marrakech, October 2018, paper 8596620, 552-556. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/CIST.2018.8596620.10.1109/CIST.2018.8596620
  26. 26. Seifnaraghi, N., Ebrahimi, S.G., Ince, E.A. (2009) Novel traffic lights signaling technique based on lane occupancy rates. In: Proceedings of the 24th International Symposium on Computer and Information Sciences, Guzelyurt, September 2009, paper 5291891, 592-596. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/ISCIS.2009.5291891.10.1109/ISCIS.2009.5291891
  27. 27. Shepelev, V., Aliukov, S., Glushkov, A., Shabiev, S. (2020a) Identification of distinguishing characteristics of intersections based on statistical analysis and data from video cameras. J Big Data, 7 (46). DOI:10.1186/s40537-020-00324-7.10.1186/s40537-020-00324-7
  28. 28. Shepelev, V., Aliukov, S., Nikolskaya, K., Das, A., Slobodin, I. (2020b) The use of multi-sensor video surveillance system to assess the capacity of the road network. Transport and Telecommunication, 21(1), 15-31.10.2478/ttj-2020-0002
  29. 29. Tang, J., Zhang, X., Yin, W., Zou, Y., Wang, Y. (2020) Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations. (in press) DOI: 10.1080/15472450.2020.1713772.10.1080/15472450.2020.1713772
  30. 30. Wang, Z., Huang, J., Xiong, N.N., Zhou, X., Lin, X., Ward, T.L. (2020) A robust vehicle detection scheme for intelligent traffic surveillance systems in smart cities. IEEE Access, 8(9152951), 139299-139312. DOI: 10.1109/ACCESS.2020.3012995.10.1109/ACCESS.2020.3012995
  31. 31. Zakharov, D.A., Karmanov, D.S., Fadyushin, A.A., Chistyakov, A.N. (2018) Simulation modeling of traffic for various types of traffic lights regulation in conditions of intensive traffic of vehicles. Journal of Mechanical Engineering Research and Developments, 41(4), 58-61. DOI: 10.26480/jmerd.04.2018.58.61.10.26480/jmerd.04.2018.58.61
  32. 32. Zaki, M., Sayed, T., Tageldin, A., Hussein, M. (2013) Application of computer vision to diagnosis of pedestrian safety issues. Transportation Research Record, 2393, 75-84. DOI: 10.3141/2393-09.10.3141/2393-09
  33. 33. Zhang, Z., Liu, K., Gao, F., Li, X., Wang, G. (2016) Vision-based vehicle detecting and counting for traffic flow analysis. In: Proceedings of the International Joint Conference on Neural Networks, October 2016, Vancouver, July 2016, paper 7727480, 2267-2273. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/IJCNN.2016.7727480.10.1109/IJCNN.2016.7727480
  34. 34. Zhou, B., Cao, J., Li, J. (2013) An adaptive traffic light control scheme and its implementation in WSN-based ITS. International Journal on Smart Sensing and Intelligent Systems, 6(4), 1559-1581. DOI: 10.21307/ijssis-2017-604.10.21307/ijssis-2017-604
DOI: https://doi.org/10.2478/ttj-2021-0032 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 417 - 424
Published on: Nov 20, 2021
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Alexandr Glushkov, Vladimir Shepelev, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.