Have a personal or library account? Click to login
Object and Lane Detection Technique for Autonomous Car Using Machine Learning Approach Cover

Object and Lane Detection Technique for Autonomous Car Using Machine Learning Approach

Open Access
|Nov 2021

References

  1. 1. Audibert, H.K.Y. & Ponce, J. (2010) General road detection from a single image, IEEE Trans. Image Process. 19(8), 2211–2220, https://doi.org/10.1109/TIP.2010.2045715.10.1109/TIP.2010.204571520371404
  2. 2. Bellis, Elizabeth, & Jim. (2008) National motor vehicle crash causation survey (NMVCCS). (SAS analytical user’s manual. No. HS-811 053.)
  3. 3. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., & Winner. H. (2014) Three Decades of Driver Assistance Systems: Review and Future Perspectives, IEEE Intelligent Transportation Systems Magazine, 6(4), 6–22. doi: 10.1109/MITS.2014.2336271.10.1109/MITS.2014.2336271
  4. 4. Bojarski, M., Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016) End to End Learning for Self-Driving Cars. ArXiv, abs/1604.07316.
  5. 5. Borkar, A., Hayes, M., & Smith, M. (2012) A novel lane detection system with efficient ground truth generation, IEEE Trans. Intell. Transp. Syst. 13 (1), 365–374. https://doi.org/10.1109/TITS.2011.2173196.10.1109/TITS.2011.2173196
  6. 6. Eskandarian A. (2012) Fundamentals of Driver Assistance. In: Eskandarian A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_19.10.1007/978-0-85729-085-4_19
  7. 7. Gayko J.E. (2012). Lane Departure and Lane Keeping. In: Eskandarian A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_2610.1007/978-0-85729-085-4_26
  8. 8. He Mao & Mei Xie. (2012) Lane detection based on though transform and endpoints classification, International Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 125-127. doi:10.1109/ICWAMTIP.2012.
  9. 9. Kuk, G., An, H., Ki, H. & Cho, I. (2010) Fast lane detection and tracking based on hough transform with reduced memory requirement, 13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal, 1344–1349, https://doi.org/10.1109/ITSC.2010.562512110.1109/ITSC.2010.5625121
  10. 10. Kunz, N. Chase. (2017) Vision-Based Control of a Full-Size Car by Lane Detection. All Graduate Theses and Dissertations. 6534. Utah State University, United States.
  11. 11. Liyong Wang, Peng Sun, Min Xie, Shaobo Ma, Boxiong Li, Yuchen Shi & Qinghua Su. (2020). Advanced Driver-Assistance System (ADAS) for Intelligent Transportation Based on the Recognition of Traffic Cones, Advances in Civil Engineering, 2020 (8883639), 8 pages. DOI.org/10.1155/2020/8883639.
  12. 12. Lu, M., Wevers, K. & Heijden, R. V. D. (2005) Technical Feasibility of Advanced Driver Assistance Systems (ADAS) for Road Traffic Safety, Transportation Planning and Technology. 28(3), 167–187. https://doi.org/10.1080/03081060500120282.10.1080/03081060500120282
  13. 13. Muthalagu, R., Bolimera, A. & Kalaichelvi, V. (2021) Vehicle lane markings segmentation and keypoint determination using deep convolutional neural networks, Multimed Tools Appl. 80, 11201–11215. https://doi.org/10.1007/s11042-020-10248-2.10.1007/s11042-020-10248-2
  14. 14. Open-Source Autonomous Driving Dataset. (2017) https://github.com/udacity/self-driving-car-sim.
  15. 15. Pan, X., Shi, J., Luo, P., Wang, X. & Tang, X. (2018) Spatial as deep: Spatial CNN for traffic scene understanding, arXiv preprint arXiv:1712.06080
  16. 16. Raja, M., Anudeepsekhar, B. & Kalaichelvi, V. (2020) Lane detection technique based on perspective transformation and histogram analysis for self-driving cars. Computers & Electrical Engineering, 85, 1-16. https://doi.org/10.1016/j.compeleceng.2020.106653.10.1016/j.compeleceng.2020.106653
  17. 17. Shaun, Fernandes, Dhruv, Duseja, & Muthalagu, R. (2021) Application of Image Processing Techniques for Autonomous Cars, Proceedings of Engineering and Technology Innovation, 17, 01-12. https://doi.org/10.46604/peti.2021.6074.10.46604/peti.2021.6074
  18. 18. Simon Sternlund, Johan Strandroth, Matteo Rizzi, Anders Lie & Claes Tingvall (2017) The effectiveness of lane departure warning systems – A reduction in real-world passenger car injury crashes, Traffic Injury Prevention, 18(2), 225-229. DOI: 10.1080/15389588.2016.1230672.10.1080/15389588.2016.123067227624313
  19. 19. Singh, S. (2015) Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. (Traffic Safety Facts Crash•Stats. Report No. DOT HS 812 115). Washington, DC: National Highway Traffic Safety Administration.
  20. 20. Tabelini, L., Berriel R., Paixão T.M., Badue C., Alberto. F De Souza. & Oliveira-Santos, T. (2020) PolyLaneNet: Lane estimation via deep polynomial regression, arXiv preprint arXiv:2004.10924
  21. 21. Talib, M.L., Rui X., Ghazali K.H., Mohd. Zainudin N. & Ramli S. (2013) Comparison of Edge Detection Technique for Lane Analysis by Improved Hough Transform, Advances in Visual Informatics (IVIC 2013). Selangor, Malaysia, November, 176-183. https://doi.org/10.1007/978-3-319-02958-0_17.10.1007/978-3-319-02958-0_17
  22. 22. Tusimple benchmark ground truth (2018), https://github.com/TuSimple/tusimple-benchmark/issues/3.
  23. 23. Xing, Y. et al. (2018) Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision, IEEE/CAA Journal of Automatica Sinica. 5(3), 645-661, doi: 10.1109/JAS.2018.7511063.10.1109/JAS.2018.7511063
  24. 24. Xu, H., Wang, X., Huang, H., Wu, K. & Fang, Q. (2009) A fast and stable lane detection method based on b-spline curve, IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design, Wenzhou, China, 1036–1040. https://doi.org/10.1109/CAIDCD.2009.5375392.10.1109/CAIDCD.2009.5375392
  25. 25. Yan, Xuqin and Yanqiang, Li. (2017) A method of lane edge detection based on Canny algorithm. 2017 Chinese Automation Congress (CAC), Jinan, China, 2120-2124.10.1109/CAC.2017.8243122
  26. 26. Zhao, Z.Q., Zheng, P., Xu, S.T. & Wu, X. (2018) Object detection with deep learning: A review, arXiv e-prints, arXiv:1807.05511.
DOI: https://doi.org/10.2478/ttj-2021-0029 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 383 - 391
Published on: Nov 20, 2021
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Raja Muthalagu, Anudeep Sekhar Bolimera, Dhruv Duseja, Shaun Fernandes, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.