Have a personal or library account? Click to login
Analysis and Prediction of Vehicles Speed in Free-Flow Traffic Cover

Analysis and Prediction of Vehicles Speed in Free-Flow Traffic

Open Access
|Jun 2021

References

  1. 1. Bassani, M., Catani, L., Cirillo, C., Mutani, G. (2016) Night-time and daytime operating speed distribution in urban arterials. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 56-69. DOI:10.1016/j.trf.2016.06.020.10.1016/j.trf.2016.06.020
  2. 2. Bassani, M., Dalmazzo, D., Marinelli, G., Cirillo, C. (2014) The effects of road geometrics and traffic regulations on driver-preferred speeds in northern Italy. An exploratory analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 25, 10-26. DOI:10.1016/j.trf.2014.04.019.10.1016/j.trf.2014.04.019
  3. 3. Bhowmik, T., Yasmin, S., Eluru, N. (2019) A multilevel generalized ordered probit fractional split model for analyzing vehicle speed. Analytic Methods in Accident Research, 21, 13-31. DOI:10.1016/j.amar.2018.12.001.10.1016/j.amar.2018.12.001
  4. 4. Brzozowska, L., Brzozowski, K., Nowakowski, J. (2005) An application of artificial neural network to diesel engine modelling. In: Proceedings of the Third Workshop–2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS, 2005, 142-146.10.1109/IDAACS.2005.282958
  5. 5. Chen, D., Chen, L., Liu, J. (2013) Road link traffic speed pattern mining in probe vehicle data via soft computing techniques. Applied Soft Computing, 13(9), 3894-3902, DOI:10.1016/j.asoc.2013.04.020.10.1016/j.asoc.2013.04.020
  6. 6. Chen, Y., Zhu, L., Gonder, J., Young, S., Walkowicz, K. (2017) Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach. Transportation Research Part C: Emerging Technologies, 83, 134-145. DOI:10.1016/j.trc.2017.08.003.10.1016/j.trc.2017.08.003
  7. 7. De Pauw, E., Daniels, S., Brijs, T., Hermans, E., Wets, G. (2014) Behavioural effects of fixed speed cameras on motorways: Overall improved speed compliance or kangaroo jumps? Accident Analysis and Prevention, 73, 132-140. DOI:10.1016/j.aap.2014.08.019.10.1016/j.aap.2014.08.01925217731
  8. 8. Dinh, D.D., Kojima, A., Kubota, H. (2013) Modeling operating speeds on residential streets with a 30 km/h speed limit: regression versus neural networks approach. Journal of the Eastern Asia Society for Transportation Studies, 10, 1650–1669. DOI:10.11175/easts.10.1650.
  9. 9. Eluru, N., Chakour, V., Chamberlain, M., Miranda-Moreno, L.F. (2013) Modeling vehicle operating speed on urban roads in Montreal: A panel mixed ordered probit fractional split model. Accident Analysis and Prevention, 59, 125-134. DOI:10.1016/j.aap.2013.05.016.10.1016/j.aap.2013.05.01623792611
  10. 10. Elvik, R. (2012) Speed Limits, Enforcement, and Health Consequences. Annual review of public health, 33, 225-238. DOI:10.1146/annurev-publhealth-031811-124634.10.1146/annurev-publhealth-031811-12463422224882
  11. 11. Figueroa, A.M., Tarko, A.P. (2005) Speed factors on two-lane rural highways in free-flow conditions. Journal of the Transportation Research Board, 1912(1), 49–46. DOI:10.1177/036119810519120010510.1177/0361198105191200105
  12. 12. Frejo, J.R.D., Papamichail, I., Papageorgiou, M., De Schutter, B. (2019) Macroscopic modeling of variable speed limits on freeways. Transportation Research Part C: Emerging Technologies, 100, 15-33. DOI:10.1016/j.trc.2019.01.001.10.1016/j.trc.2019.01.001
  13. 13. Gao, C., Xu, J., Li, Q, Yang, J. (2019) The Effect of Posted Speed Limit on the Dispersion of Traffic Flow Speed. Sustainability, 11, 3594. DOI:10.3390/su11133594.10.3390/su11133594
  14. 14. Gargoum, S. A., El-Basyouny, K. (2016) Exploring the association between speed and safety: A path analysis approach. Accident Analysis and Prevention, 93, 32-40. DOI:10.1016/j.aap.2016.04.029.10.1016/j.aap.2016.04.02927163700
  15. 15. Gayah, V.V., Donnell, E.T., Yu, Z., Li, L. (2018) Safety and operational impacts of setting speed limits below engineering recommendations. Accident Analysis and Prevention, 121, 43-52. DOI:10.1016/j.aap.2018.08.029.10.1016/j.aap.2018.08.02930205285
  16. 16. He, Sheng-Xue (2016) Will a higher free-flow speed lead us to a less congested freeway? Transportation Research Part A: Policy and Practice, 85, 17-38. DOI:10.1016/j.tra.2015.12.003.10.1016/j.tra.2015.12.003
  17. 17. Himes, S.C., Donnell, E.T., Porter, R.J. (2013) Posted speed limit: To include or not to include in operating speed models. Transportation Research Part A: Policy and Practice, 52, 23-33. DOI:10.1016/j.tra.2013.04.003.10.1016/j.tra.2013.04.003
  18. 18. Hu, Z., Smirnova, M.N., Zhang, Y., Smirnov, N.N., Zhu, Z. (2021) Estimation of travel time through a composite ring road by a viscoelastic traffic flow model. Mathematics and Computers in Simulation, 181, 501-521. DOI:10.1016/j.matcom.2020.09.025.10.1016/j.matcom.2020.09.025
  19. 19. International Transport Forum (ITF). 2018. Speed and Crash Risk. International Traffic Safety Data and Analysis Group, Paris, OECD.
  20. 20. Karlaftis, M.G., Vlahogianni, E.I. (2011) Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies, 19, 387-399. DOI:10.1016/j.trc.2010.10.004.10.1016/j.trc.2010.10.004
  21. 21. Leong, L.V., Azai, T.A., Goh, W.C., Mahdi, M.B. (2020) The Development and Assessment of Free-Flow Speed Models under Heterogeneous Traffic in Facilitating Sustainable Inter Urban Multilane Highways. Sustainability, 12, 3445. DOI:10.3390/su12083445.10.3390/su12083445
  22. 22. Liu, M.-W., Oeda, Y., Sumi, T. (2016) Modeling free-flow speed according to different water depths—From the viewpoint of dynamic hydraulic pressure. Transportation Research Part D: Transport and Environment, 47, 13-21. DOI:10.1016/j.trd.2016.04.009.10.1016/j.trd.2016.04.009
  23. 23. McFadden, J., Yang, W.T., Durrans, S. (2001) Application of artificial neural networks to predict speeds on two-lane rural highways. Transportation Research Record: Journal of the Transportation Research Board, 1751, 9–17. DOI:10.3141/1751-02.10.3141/1751-02
  24. 24. Ministry of Infrastructure and Development. (2015) Regulation of the Minister of Infrastructure and Development of 20 October 2015 on the classification of road sections with regard to the rate of fatal accidents and due to the road network safety, Item 1845. Warsaw: Polish Government Publishing Service (in Polish).
  25. 25. Montella, A., Punzo, V., Chiaradonna, S., Mauriello, F., Montanino, M. (2015) Point-to-point speed enforcement systems: Speed limits design criteria and analysis of drivers’ compliance. Transportation Research Part C, 53, 1-18. DOI:10.1016/j.trc.2015.01.025.10.1016/j.trc.2015.01.025
  26. 26. National Highway Traffic Safety Administration (NHTSA). (2018) Traffic Safety Facts data 2016: Speeding. Washington: National Center for Statistics and Analysis
  27. 27. National Road Safety Council (NRSC). (2013) National Road Safety Programme 2013-2020. Warsaw: Ministry of Infrastructure and Development (in Polish).
  28. 28. National Road Safety Council (NRSC). (2017) The state of road traffic safety and related activities in 2017. Warsaw: Ministry of Infrastructure and Development (in Polish).
  29. 29. OECD. (2018) Speed and crash risk. Paris: ITF/OECD.
  30. 30. Osowski, S. (1996) Neural networks in an algorithmic approach. Warsaw: WNT (in Polish).
  31. 31. Rothlauf, F. (2006) Representations for Genetic and Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg.
  32. 32. Saifizul, A.A., Yamanaka, H., Karim, M.R. (2011) Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit. Accident Analysis & Prevention, 43(3), 1068-1073. DOI:10.1016/j.aap.2010.12.013.10.1016/j.aap.2010.12.01321376903
  33. 33. Samaras, C., Tsokolis, D., Toffolo, S., Magra, G., Ntziachristos, L., Samaras, Z. (2019) Enhancing average speed emission models to account for congestion impacts in traffic network link-based simulations. Transportation Research Part D: Transport and Environment, 75, 197-210. DOI:10.1016/j.trd.2019.08.029.10.1016/j.trd.2019.08.029
  34. 34. Semeida, A.M. (2014) Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt. Journal of Modern Transportation, 22(1), 20–29. DOI:10.1007/s40534-014-0033-3.10.1007/s40534-014-0033-3
  35. 35. Silvano, A.P., Koutsopoulos, H.N., Farah, H. (2020) Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics. Transportation Research Part A: Policy and Practice, 138, 283-298. DOI:10.1016/j.tra.2020.05.024.10.1016/j.tra.2020.05.024
  36. 36. Sordyl, J., Brzozowski, K. (2018) Estimation of a 15-minute equivalent noise level in the crossroad area. In: Proceedings of the 22nd International Scientific Conference Transport Means, Part I, Trakai, October 2018. Kaunas: Kaunas University of Technology, pp. 342-346.
  37. 37. Vadeby, A., Forsman, Å. (2017) Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds. Accident Analysis and Prevention, 103, 20-28. DOI:10.1016/j.aap.2017.03.012.10.1016/j.aap.2017.03.01228371638
  38. 38. van Erp, P.B.C., Knoop, V.L., Hoogendoorn, S.P. (2020) On the value of relative flow data. Transportation Research Part C: Emerging Technologies, 113, 2020, 74-90. DOI:10.1016/j.trc.2019.05.001.10.1016/j.trc.2019.05.001
  39. 39. Wilmots, B., Hermans, E., Brijs, T., Wets, G. (2016) Speed control with and without advanced warning sign on the field: An analysis of the effect on driving speed. Safety Science, 85, 23-32. DOI:10.1016/j.ssci.2015.12.014.10.1016/j.ssci.2015.12.014
  40. 40. Yasanthi, R.G.N., Mehran, B. (2020) Modeling free-flow speed variations under adverse road-weather conditions: Case of cold region highways. Case Studies on Transport Policy, 8(1), 22-30. DOI:10.1016/j.cstp.2020.01.003.10.1016/j.cstp.2020.01.003
  41. 41. Yu, B., Chen, Y., Bao, S. (2019) Quantifying visual road environment to establish a speeding prediction model: An examination using naturalistic driving data. Accident Analysis and Prevention, 129, 289-298. DOI:10.1016/j.aap.2019.05.011.10.1016/j.aap.2019.05.01131177040
DOI: https://doi.org/10.2478/ttj-2021-0020 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 266 - 277
Published on: Jun 22, 2021
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Andrzej Maczyński, Krzysztof Brzozowski, Artur Ryguła, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.