Have a personal or library account? Click to login
A Vehicular Queue Length Measurement System in Real-Time Based on SSD Network Cover

A Vehicular Queue Length Measurement System in Real-Time Based on SSD Network

Open Access
|Feb 2021

References

  1. 1. Burnos, P., Gajda, J., Piwowar, P., Sroka, R., Stencel, M., Zeglen, T. (2007) Measurements of road traffic parameters using inductive loops and piezoelectric sensors.
  2. 2. Sun, C., Ritchie, S. G. and Tsai, K. (1998) Algorithm development for derivation of section-related measures of traffic system performance using inductive loop detectors. Transportation Research Record, 1643(1), pp. 171–180.10.3141/1643-21
  3. 3. Slimani, I., Zaarane, A., Hamdoun, A., Atouf, I. (2018) Traffic surveillance system for vehicle detection using discrete wavelet transform. Journal of Theoretical & Applied Information Technology, 96(17).
  4. 4. AL Okaishi, W., Zaarane, A., Slimani, I., Atouf, I., Benrabh, M. (2019a) Vehicular queue length measurement based on edge detection and vehicle feature extraction. Journal of Theoretical & Applied Information Technology, 97(5).
  5. 5. Fathy, M., Siyal, MY. (1995) Real-time image processing approach to measure traffic queue parameters. IEE Proceedings-Vision, Image and Signal Processing, 142(5), pp. 297–303.10.1049/ip-vis:19952064
  6. 6. Albiol, A., Albiol, A., Mossi, J. M. (2011a) Video-based traffic queue length estimation. Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, pp. 1928–1932.10.1109/ICCVW.2011.6130484
  7. 7. Chintalacheruvu, N., Muthukumar, V. (2012) Video based vehicle detection and its application in intelligent transportation systems. Journal of Transportation Technologies, 2(04), p. 305.10.4236/jtts.2012.24033
  8. 8. Albiol, A., Sanchis, L., Albiol, A., Mossi, J. M. (2011b) Detection of parked vehicles using spatiotemporal maps. IEEE Transactions on Intelligent Transportation Systems, 12(4), pp. 1277–1291.10.1109/TITS.2011.2156791
  9. 9. Rourke, A., Bell, M. (1991) Queue detection and congestion monitoring using image processing. Traffic engineering & control, 32(9).
  10. 10. Siyal, M. Y., Fathy, M. (1999) A neural-vision based approach to measure traffic queue parameters in real-time. Pattern Recognition Letters, 20(8), pp. 761–770.10.1016/S0167-8655(99)00040-9
  11. 11. Iwasaki, Y. (1997) An image processing system to measure vehicular queues and an adaptive traffic signal control by using the information of the queues. Intelligent Transportation System, ITSC’97., IEEE Conference on. IEEE, pp. 195–200.10.1109/ITSC.1997.660474
  12. 12. Zanin, M., Messelodi, S., Modena, C. M. (2003) An efficient vehicle queue detection system based on image processing. null. IEEE, p. 232.10.1109/ICIAP.2003.1234055
  13. 13. Shirazi, M. S., Morris, B. (2015) Vision-based vehicle queue analysis at junctions. Advanced Video and Signal Based Surveillance (AVSS), 2015 12th IEEE International Conference on. IEEE, pp. 1–6.10.1109/AVSS.2015.7301732
  14. 14. Sen-Ching, S. C., Kamath, C. (2004) Robust techniques for background subtraction in urban traffic video. Visual Communications and Image Processing. International Society for Optics and Photonics, 5308, pp. 881–893.
  15. 15. AL Okaishi, W., Atouf, I., Benrabh, M. (2019b) Real-Time Traffic Light Control System Based on Background Updating and Edge Detection. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) on. IEEE, pp. 1–5.10.1109/WITS.2019.8723752
  16. 16. Lowe, D. (2004) Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60, pp. 91–110.10.1023/B:VISI.0000029664.99615.94
  17. 17. Dalal, N., Triggs, B. (2005) Histograms of oriented gradients for human detection. IEEE computer society conference on computer vision and pattern recognition (CVPR’05), 1, pp. 886–893.10.1109/CVPR.2005.177
  18. 18. Tan, X., Triggs, B. (2007) Fusing Gabor and LBP feature sets for kernel-based face recognition. International workshop on analysis and modeling of faces and gestures, pp. 235–249.10.1007/978-3-540-75690-3_18
  19. 19. Nogueira, K., Miranda, W. O., Dos Santos, J. A. (2015) Improving spatial feature representation from aerial scenes by using convolutional networks. Graphics, Patterns and Images (SIBGRAPI), 2015 28th SIBGRAPI Conference on, IEEE, pp. 289–296.10.1109/SIBGRAPI.2015.39
  20. 20. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012) Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems, pp. 1106–1114.
  21. 21. Simonyan, K., Zisserman, A. (2014) Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv: 1409.1556.
  22. 22. Girshick, R., Donahue, J., Darrell, T. (2015a) Region-based convolutional networks for accurate object detection and segmentation. IEEE transactions on pattern analysis and machine intelligence, 38(1), pp. 142–158.10.1109/TPAMI.2015.243738426656583
  23. 23. Girshick, R. (2015b) Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448.10.1109/ICCV.2015.169
  24. 24. Ren, S., HE, K., Girshick, R., Sun, J. (2015) Faster R-CCN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, pp. 91–99.
DOI: https://doi.org/10.2478/ttj-2021-0003 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 29 - 38
Published on: Feb 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Wahban Al Okaishi, Abdelmoghit Zaarane, Ibtissam Slimani, Issam Atouf, Mohamed Benrabh, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.