Have a personal or library account? Click to login
A Big Data Application for Low Emission Heavy Duty Vehicles Cover

A Big Data Application for Low Emission Heavy Duty Vehicles

Open Access
|Nov 2020

References

  1. 1. ACEA (2017) The Automobile Industry Pocket Guide 2016-2017, Brussels, 2017.
  2. 2. Boniface, M., Nasser, B., Papay, J. and Kyriazis, D. (2010) Platform-as-a-service architecture for real-time quality of service management in clouds. In: Proceedings of the 5th International Conference on Internet and Web Applications and Services, Barcelona, May 2010. New York: IEEE, pp. 155‐160.10.1109/ICIW.2010.91
  3. 3. Davis, S. C., Diegel, S. W. and Boundy, R. G. (2013) Transportation Energy Data Book. Washington: U.S. Department of Energy.10.2172/1110942
  4. 4. Dhuldhule, P. A., Lakshmi, J. and Nandy, S. K. (2015) High Performance Computing Cloud -- A Platform-as-a-Service Perspective. In: Proceedings of the International Conference on Cloud Computing and Big Data, Shanghai, November 2015. New York: IEEE, pp. 21‐28.10.1109/CCBD.2015.56
  5. 5. Dikaiakos, M., Katsaros, D., Mehra, P., Pallis, G. and Vakali, A. (2009) Cloud computing: Distributed internet computing for IT and scientific research. IEEE Internet Computing, 13(5), 10–13. DOI: 10.1109/MIC.2009.103.10.1109/MIC.2009.103
  6. 6. EC (2014) Questions and Answers on the Commission strategy for reducing Heavy-Duty Vehicles’ (HDVs) fuel consumption and CO2 emissions, Memo, Brussels, 21 May 2014.
  7. 7. eCoMove European Union Research Project. http://www.ecomove-project.eu/, last accessed 2020/01/23
  8. 8. Fanti, M. P., Iacobellis, G., Nolich, M., Rusich, A. and Ukovich, W. (2014) Cooperative Logistics for Sustainable Mobility of Goods. In: Proceedings of the 1st 1st Workshop Proceedings on the State of the art and Challenges of Research Efforts, Bari, December 2014.
  9. 9. Foxx, A., Mendez, V., Winfree, G. D., Hu, P. S., Pritzker, P., Andrews, B. H., Doms, M. and Thompson, J. H. (2015) Commodity Flow Survey. United States: Department of Transportation. (EC12TCF-US).
  10. 10. Jimenez, P. (2017) Intelligent vehicles: enabling technologies and future developments. Oxford: Butterworth-Heinemann.
  11. 11. Kimball, R. and Ross, M. (2013) The data warehouse toolkit. Hoboken: Wiley.
  12. 12. Kohut, N. J., Hedrick, J. and Borrelli, F. (2009) Integrating traffic data and model predictive control to improve fuel economy. In: Proceedings of the 12th IFAC Symposium on Transportation Systems, Radondo Beach, September 2009. Amsterdam: Elsevier, pp. 155‐160.10.3182/20090902-3-US-2007.0032
  13. 13. Li, W., Wu, G., Yao, D., Zhang, Y. and Barth, M. J. (2018) Dynamic En-Route Eco-Navigation: Strategy Design, Implementation and Evaluation. In: Proceedings of the 21st International IEEE Conference on Intelligent Transportation Systems, Maui, Hawaii, September 2018. New York: IEEE, pp. 1888-1893.10.1109/ITSC.2018.8569444
  14. 14. Mahmassani, H. S., Dong, J., Kim, J., Chen, R. B. and Park, B. (2009) Incorporating Weather Impacts in Traffic Estimation and Prediction Systems. United States: Department of Transport. (DTFH61-06-D-00005).
  15. 15. optiTruck European Union Research Project. http://optitruck.eu/, last accessed 2020/07/25.
  16. 16. REDUCTION European Union Research Project, http://www.reduction-project.eu/, last accessed 2020/07/25.
  17. 17. Saltsman, S. (2014) Impacts of Connectivity and Automation on Vehicle Operations. In: Proceedings of the Global Symposium on Connected Vehicle and Infrastructure, Michigan, September 2014. Michigan: University of Michigan, pp. 59‐68.
  18. 18. Vehicle Powertrain and Routing Co-Optimization. https://vpro.umn.edu/, last accessed 2020/07/25.
  19. 19. Vlassenroot, S., Molin, E., Marchau, V., Brookhuis, K. and Witlox, F. (2011) Public support of intelligent speed assistance: which factors will determine the acceptability? In: Proceedings of the 18th ITS World Congress, Orlando, September 2011. Orlando: ITS America, pp. 1-13.
  20. 20. Work, D. B., Tossavainen, O. P., Blandin, S., Bayen, A. M., Iwuchukwu, T. and Tracton, K. (2008) An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, July 2008, New York: IEEE, pp. 5062–5068.10.1109/CDC.2008.4739016
DOI: https://doi.org/10.2478/ttj-2020-0021 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 265 - 274
Published on: Nov 26, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Nikos Dimokas, Dimitris Margaritis, Manuel Gaetani, Kerem Koprubasi, Evangelos Bekiaris, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.