Have a personal or library account? Click to login
A Deep Learning Approach for Predicting Bus Passenger Demand Based on Weather Conditions Cover

A Deep Learning Approach for Predicting Bus Passenger Demand Based on Weather Conditions

Open Access
|Nov 2020

References

  1. 1. Tao, S., Corcoran, J., Hickman, M., Stimson, R. (2016) The influence of weather on local geographical patterns of bus usage. Journal of Transport Geography, 54, 66–80. DOI: 10.1016/j.jtrangeo.2016.05.009.10.1016/j.jtrangeo.2016.05.009
  2. 2. Stover, V., McCormack, E. (2015) The Impact of Weather on Bus Ridership in Pierce County, Washington. Journal of Public Transportation, 15(1), 95–110. DOI: 10.5038/2375-0901.15.1.6.10.5038/2375-0901.15.1.6
  3. 3. Li, J., Li, X., Chen, D., Godding, L. (2018) Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing. Journal of Transport Geography, 66(35), 356–368. DOI: 10.1016/j.jtrangeo.2017.10.023.10.1016/j.jtrangeo.2017.10.023
  4. 4. Zhou, M., Wang, D., Li, Q., Yue, Y., Tu, W., Cao, R. (2017) Impacts of weather on public transport ridership: Results from mining data from different sources. Transportation Research Part C: Emerging Technologies, 75, 17–29. DOI: 10.1016/j.trc.2016.12.001.10.1016/j.trc.2016.12.001
  5. 5. Singhal, A., Kamga, C., Yazici, A. (2014) Impact of weather on urban transit ridership. Transportation Research Part A: Policy and Practice, 69, 379–391. DOI:10.1016/j.tra.2014.09.008
  6. 6. Guo, Z., Wilson, N., Rahbee, A. (2008) Impact of Weather on Transit Ridership in Chicago, Illinois. Transportation Research Record: Journal of the Transportation Research Board, 2034, 3–10.10.3141/2034-01
  7. 7. Guo, Z., Wilson, N. H., Rahbee, A. (2007) The Impact of Weather on Transit Ridership Chicago. TRB Annual Meeting, pages 3–10.10.3141/2034-01
  8. 8. Kalkstein, A. J., Kuby, M., Gerrity, D., Clancy, J. J. (2009) An analysis of air mass effects on rail ridership in three US cities. Journal of Transport Geography, 17(3), 198–207. DOI: 10.1016/j.jtrangeo.2008.07.003.10.1016/j.jtrangeo.2008.07.003
  9. 9. Cools, M., Moons, E., Creemers, L., Wets, G. (2010) Changes in Travel Behavior in Response to Weather Conditions. Transportation Research Record: Journal of the Transportation Research Board 2157, 22–28.10.3141/2157-03
  10. 10. Sabir, M., van Ommeren, J., Koetse, M. J., Rietveld, P. (2010) Impact of weather on daily travel demand, p.25, ID: 2060163.
  11. 11. Costa, V., Fontes, T., Borges, J., Dias, T. (2017) Impacts of Weather Conditions in Urban Public Transport: Understanding the Effects of Climatic Changes using Big Data. Transportation Research Board, Washington D.C.
  12. 12. Arana, P., Cabezudo, S., Peñalba, M. (2014) Influence of weather conditions on transit ridership: A statistical study using data from Smartcards. Transportation Research Part A: Policy and Practice 59, 1–12. DOI: 10.1016/j.tra.2013.10.019.10.1016/j.tra.2013.10.019
  13. 13. Kalkstein, A. J., Kuby, M., Gerrity, D., Clancy, J. J. (2009) An analysis of air mass effects on rail ridership in three US cities. Journal of Transport Geography 17(3), 198–207. DOI: 10.1016/j.jtrangeo.2008.07.003.10.1016/j.jtrangeo.2008.07.003
  14. 14. Yagi, S., Mohammadian, A. (2008) Policy simulation for New BRT and area pricing alternatives using an opinion survey in Jakarta. Transportation Planning and Technology 31(5), 589–612. DOI:10.1080/03081060802087676.10.1080/03081060802087676
  15. 15. Mahrsi, M. K. E. (2014) A Novel Method of Multi-Information Acquisition for Electromagnetic Flow Meters. Sensors, 16(1), 25. DOI:10.3390/s16010025.10.3390/s16010025473205826712762
  16. 16. Hjorthol, R. (2013) Winter weather – an obstacle to older people’s activities? Journal of Transport Geography 28, 186–191. DOI: 10.1016/j.jtrangeo.2012.09.003.10.1016/j.jtrangeo.2012.09.003
  17. 17. Zupan, J., Gasteiger, J. (1993) Neural Networks for Chemists: An Introduction. John Wiley Sons, Inc., USA.
  18. 18. Cochocki, A., Unbehauen, R. (1993) Neural Networks for Optimization and Signal Processing. John Wiley Sons, Inc., USA, 1st edition.
  19. 19. Rowland, Z., Vrbka, J. (2016) Using artificial neural networks for prediction of key indicators of a company in global world. In T. Klieštik, editor, Globalization and its socio-economic consequences, 16th international scientific conference proceedings, PTS I-V, pages 1896–1903, Žilina, Slovensko.
  20. 20. Chollet, F. (2015) keras. https://github.com/fchollet/keras.
  21. 21. Creemers, L., Wets, G., Cools, M. (2015) Meteorological variation in daily travel behaviour: evidence from revealed preference data from the Netherlands. Theoretical and Applied Climatology, 120(1-2), 183–194. DOI: 10.1007/s00704-014-1169-0.10.1007/s00704-014-1169-0
  22. 22. de Montigny, L., Ling, R., Zacharias. J. (2011) The Effects of Weather on Walking Rates in Nine Cities. Environment and Behavior, 44(6), 821–840. DOI: 10.1177/0013916511409033.10.1177/0013916511409033
  23. 23. Schmiedeskamp, P., Zhao, W. (2016) Estimating Daily Bicycle Counts in Seattle, Washington, from Seasonal and Weather Factors. Transportation Research Record: Journal of the Transportation Research Board, 2593(1), 94–102. DOI: 10.3141/2593-12.10.3141/2593-12
  24. 24. Maas, A.L., Ng. A.Y. (2013) Rectifier non linearities improve neural network acoustic models. 28. Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, JMLR: W---amp---CP volume 28.
  25. 25. Li, J., Li, X., Chen, D. and Godding L. (2018) Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing. Journal of Transport Geography, 66(35):356–368. DOI:10.1016/j.jtrangeo.2017.10.023.10.1016/j.jtrangeo.2017.10.023
  26. 26. Correia, R., Fontes, T., Luís Borges, J., (2020). Forecasting of urban public transport demand based on weather conditions. Advances in Mobility as a Service Systems, Springer, Book Series Advances in Intelligent Systems and Computing, Edited by Nathanail E.G., Adamos, G., Karakikes, I., in press.
  27. 27. Mukai N. and Yoden N. (2012) Taxi Demand Forecasting Based on Taxi Probe Data by Neural Network. In: Watanabe T., Watada J., Takahashi N., Howlett R., Jain L. (eds) Intelligent Interactive Multimedia: Systems and Services. Smart Innovation, Systems and Technologies, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29934-6_57.10.1007/978-3-642-29934-6_57
DOI: https://doi.org/10.2478/ttj-2020-0020 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 255 - 264
Published on: Nov 26, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Tânia Fontes, Ricardo Correia, Joel Ribeiro, José Luís Borges, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.