Have a personal or library account? Click to login
A Big Data Demand Estimation Model for Urban Congested Networks Cover

A Big Data Demand Estimation Model for Urban Congested Networks

Open Access
|Nov 2020

References

  1. 1. McNally, M. G. (2007) The Four-Step Model. In: Handbook of Transport Modelling, 1, Emerald Group Publishing Limited, pp. 35–53.10.1108/9780857245670-003
  2. 2. Cascetta, E. and S. Nguyen. (1988) A unified framework for estimating or updating origin/destination matrices from traffic counts, Transportation Research Part B: Methodological, vol. 22, no. 6, pp. 437–455, Dec. 198810.1016/0191-2615(88)90024-0
  3. 3. Cascetta, E., Inaudi, D. and G. Marquis. (1993) Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts, Transportation Science, 27(4), pp. 363–373, Nov. 1993.10.1287/trsc.27.4.363
  4. 4. Cantelmo, G., Qurashi, M., Prakash, A.A., Antoniou, C., Viti, F. (2020) Incorporating trip chaining within online demand estimation. Transportation Research Part B: Methodological, 132, pp. 171-187.10.1016/j.trb.2019.05.010
  5. 5. Tavana, H. (2001) Internally-consistent estimation of dynamic network origin-destination flows from intelligent transportation systems data using bi-level optimization, PhD Thesis, 2001.
  6. 6. Balakrishna, R., Ben-Akiva, M., Koutsopoulos, H. (2007) Offline Calibration of Dynamic Traffic Assignment: Simultaneous Demand-and-Supply Estimation. Transportation Research Record, vol. 2003.10.3141/2003-07
  7. 7. Frederix, R., Viti, F. and C. M. J. Tampère (2010) A density-based dynamic OD estimation method that reproduces within-day congestion dynamics. In: 13th International IEEE Conference on Intelligent Transportation Systems, 2010, pp. 694–699.10.1109/ITSC.2010.5625220
  8. 8. Antoniou, C. et al. (2016) Towards a generic benchmarking platform for origin–destination flows estimation/updating algorithms: Design, demonstration and validation, Transportation Research Part C: Emerging Technologies, vol. 66, pp. 79–98, May 2016.10.1016/j.trc.2015.08.009
  9. 9. Barceló, J. and L. Montero (2015) A Robust Framework for the Estimation of Dynamic OD Trip Matrices for Reliable Traffic Management, Transportation Research Procedia, vol. 10, pp. 134–144.10.1016/j.trpro.2015.09.063
  10. 10. Mitsakis, E., Grau, J.-M. S., Chrysohoou, E. and G. Aifadopoulou (2013) A Robust Method for Real Time Estimation of Travel Times for Dense Urban Road Networks Using Point-to-Point Detectors, Transportation Research Board 92nd Annual Meeting, 2013.
  11. 11. Antoniou, C., Balakrishna, R., ---amp--- Koutsopoulos, H. N. (2011). A Synthesis of emerging data collection technologies and their impact on traffic management applications. European Transport Research Review, 3(3), 139–148.10.1007/s12544-011-0058-1
  12. 12. Nigro, M., Cipriani, E. and A. Del Giudice (2017) Exploiting floating car data for time-dependent O-D matrices estimation, Journal of Intelligent Transportation Systems: Technology, Planning ---amp--- Operations, 22(2), pp. 159-174.10.1080/15472450.2017.1421462
  13. 13. Di Donna, S.A., Cantelmo, G., Viti, F. (2015) A Markov Chain dynamic model for trip generation and distribution based on CDR. In: 4th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2015, pp. 243-250, June 2015.10.1109/MTITS.2015.7223263
  14. 14. Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A. and M. C. González. (2015) The path most traveled: Travel demand estimation using big data resources, Transp. Res. Part C Emerg. Technol., vol. 58, Part B, pp. 162–177, Sep. 2015.10.1016/j.trc.2015.04.022
  15. 15. Carrese, F., Cantelmo, G., Fusco, G., Viti, F. (2019) Leveraging GIS data and topological information to infer trip chaining behavior at macroscopic level. In: 6th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2019, June 2019.10.1109/MTITS.2019.8883329
  16. 16. Frederix, R., Viti, F. and M. J. Tampère. (2013) Dynamic origin–destination estimation in congested networks: theoretical findings and implications in practice, Transportmetrica: Transport Science, 9(6), pp. 494–513, Jul. 2013.10.1080/18128602.2011.619587
  17. 17. Marzano, V., Papola, A. and F. Simonelli. (2009) Limits and perspectives of effective O–D matrix correction using traffic counts, Transportation Research Part C: Emerging Technologies, 17(2), pp. 120–132.10.1016/j.trc.2008.09.001
  18. 18. Ben-Akiva, M.E., Bowman, J.L. (1988) Activity Based Travel Demand Model Systems. In: Marcotte P., Nguyen S. (eds) Equilibrium and Advanced Transportation Modelling. Centre for Research on Transportation. Springer, Boston, MA.
  19. 19. Djukic, T., Van Lint, J. and S. Hoogendoorn. (2012) Application of principal component analysis to predict dynamic origin-destination matrices. Transportation Research Record, vol. 2283.10.3141/2283-09
  20. 20. Cascetta, E., Papola, A., Marzano, V., Simonelli, F. and I. Vitiello. (2013) Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data, Transportation Research Part B: Methodological, vol. 55, pp. 171–187, Sep. 2013.10.1016/j.trb.2013.06.007
  21. 21. Cantelmo, G., Viti, F., Tampère, C.M.J., Cipriani, E., Nigro, M. (2014) Two-step approach for the correction of seed matrix in dynamic demand estimation. Transportation Research Record 2466, 125-133.10.3141/2466-14
  22. 22. Cantelmo, G., Viti, F., Cipriani, E. and M. Nigro (2015) A Two-Steps Dynamic Demand Estimation Approach Sequentially Adjusting Generations and Distributions. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1477–1482.10.1109/ITSC.2015.241
  23. 23. Ashok, K. and M. E. Ben-Akiva (2002) Estimation and prediction of time-dependent origin-destination flows with a stochastic mapping to path flows and link flows, Transp. Sci., 36(2), pp. 184–198.10.1287/trsc.36.2.184.563
  24. 24. Spall, J. C. (2012) Stochastic Optimization. In: Handbook of Computational Statistics, J. E. Gentle, W. K. Härdle, and Y. Mori, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 173–201.10.1007/978-3-642-21551-3_7
  25. 25. Frederix, R., Viti, F., Corthout, R. and C. M. J. Tampère (2011) New gradient approximation method for dynamic origin-destination matrix estimation on congested networks, Transp. Res. Rec., no. 2263, pp. 19–25, 2011.10.3141/2263-03
  26. 26. Cipriani, E., Florian, M., Mahut, M. and M. Nigro (2011) A gradient approximation approach for adjusting temporal origin-destination matrices, Transportation Research Part C: Emerging Technologies, 19(2), pp. 270–282.10.1016/j.trc.2010.05.013
  27. 27. Antoniou, C., Lima Azevedo, C., Lu, L., Pereira, F. and M. Ben-Akiva (2015) W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models, Transp. Res. Part C Emerg. Technol., vol. 59, pp. 129–146, Oct. 2015.10.1016/j.trc.2015.04.030
  28. 28. Tympakianaki, A., Koutsopoulos, H. N. and E. Jenelius. (2015) c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation, Transp. Res. Part C Emerg. Technol., vol. 55, pp. 231–245.10.1016/j.trc.2015.01.016
  29. 29. Qurashi, M., Ma, T., Chaniotakis, E., Antoniou, C. (2020) PC–SPSA: Employing Dimensionality Reduction to Limit SPSA Search Noise in DTA Model Calibration. IEEE Transactions on ITS, 21(4), pp. 1635-1645.10.1109/TITS.2019.2915273
  30. 30. Derrmann, T., Frank, R., Engel, T., Viti, F. (2017). How mobile handovers reflect urban mobility: a simulation study. In: 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017, pp. 486-491.10.1109/MTITS.2017.8005721
  31. 31. Cantelmo, G., Viti, F., Derrmann, T. (2017). Effectiveness of the two-step dynamic demand estimation model on large networks. In: 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017, pp. 356-361.10.1109/MTITS.2017.8005697
  32. 32. Cantelmo, G., Viti, F., Cipriani, E., Nigro, M. (2018) A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration”. Transportation Research Part A: Policy and Practice, Vol. 114, pp. 303-320.10.1016/j.tra.2018.01.039
  33. 33. Cipriani, E., Del Giudice, A., Nigro, M., Viti, F., Cantelmo, G. (2015). The impact of route choice modeling on dynamic OD estimation. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC2015, pp. 1483-1488.10.1109/ITSC.2015.242
DOI: https://doi.org/10.2478/ttj-2020-0019 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 245 - 254
Published on: Nov 26, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Guido Cantelmo, Francesco Viti, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.