Have a personal or library account? Click to login
A Scalable Approach for Short-Term Predictions of Link Traffic Flow by Online Association of Clustering Profiles Cover

A Scalable Approach for Short-Term Predictions of Link Traffic Flow by Online Association of Clustering Profiles

Open Access
|Apr 2020

References

  1. 1. Attanasi, A. et al. (2017) A hybrid method for real-time short-term predictions of traffic flows in urban areas, IEEE International Conference on MODELS and Technologies for Intelligent Transportation Systems IEEE, pp. 878-883, 201710.1109/MTITS.2017.8005637
  2. 2. Chun, F. (1997) Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92. Conference Board of the Mathematical Sciences, Washington. 1997.
  3. 3. David, A. and Vassilvitskii, S. (2007) k-means++: The advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics.
  4. 4. Dueck, D., Frey, B. J., Jojic, N., Jojic, V., Giaever, G., Emili, A., Musso, G., Hegele, R. (2008a) Constructing treatment portfolios using affinity propagation. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, 4955, pp. 360–371. Springer, Heidelberg (2008).
  5. 5. Dueck, D., Frey, B. J. (2007a) Non-metric affinity propagation for unsupervised image categorization. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV ‘11), October 2007, Rio de Janeiro, Brazil. IEEE Press, pp. 1–8.10.1109/ICCV.2007.4408853
  6. 6. Dueck, D. et al. (2008b) Constructing Treatment Portfolios Using Affinity Propagation, International Conference on Research in Computational Molecular Biology (RECOMB), March 2008, Singapore.10.1007/978-3-540-78839-3_31
  7. 7. Dueck, D. and Frey, B. J. (2007b) Non-metric affinity propagation for unsupervised image categorization, International Conference on Computer Vision (ICCV), October 2007, Rio de Janeiro, Brazil10.1109/ICCV.2007.4408853
  8. 8. Ester, M., Kriegel, H. P., Sander, J. and Xu, X. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231.
  9. 9. Gentile, G., Meschini, L. (2011) Using dynamic assignment models for real-time traffic forecast on large urban networks. In: Proceedings of the 2nd International Conference on Models and Technologies for Intelligent Transportation Systems, 2011, Leuven, Belgium.
  10. 10. Lazic, N., Givoni, I. E., Aarabi, P. and Frey, B. J. (2009) FLoSS: Facility Location for Subspace Segmentation, 12th International Conference on Computer Vision (ICCV), October 2009, Kyoto, Japan.10.1109/ICCV.2009.5459302
  11. 11. McAfee, A., Brynjolfsson, E. (2012) Big data: The management revolution, Harvard Business Review, 90(10), pp. 60-68.
  12. 12. Soni Madhulatha, T. (2012) An Overview on Clustering Methods, IOSR Journal of Engineering, 2(4), 2012, April, pp. 719-725.10.9790/3021-0204719725
  13. 13. Transport for London (2016). Traffic Modelling Guidelines Version 3.0, http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf, Retrieved 10-March-2016
DOI: https://doi.org/10.2478/ttj-2020-0009 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 119 - 124
Published on: Apr 30, 2020
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alessandro Attanasi, Marco Pezzulla, Luca Simi, Lorenzo Meschini, Guido Gentile, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.