Have a personal or library account? Click to login
Exploring the Potential of Web Based Information of Business Popularity for Supporting Sustainable Traffic Management Cover

Exploring the Potential of Web Based Information of Business Popularity for Supporting Sustainable Traffic Management

Open Access
|Feb 2020

References

  1. 1. Bandeira, J. M, Coelho, Sá, M. E., Tavares, R., & Borrego, C. (2011). Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Science of The Total Environment, 409(6), 1154–1163. https://doi.org/10.1016/j.scitotenv.2010.12.00810.1016/j.scitotenv.2010.12.00821216441
  2. 2. Bandeira, J. M., Fernandes, P., Fontes, T., Pereira, S. R., Khattak, A. J., & Coelho, M. C. (2018). Exploring multiple eco-routing guidance strategies in a commuting corridor. International Journal of Sustainable Transportation, 12(1), 53–65. https://doi.org/10.1080/15568318.2017.132854510.1080/15568318.2017.1328545
  3. 3. Chaniotakis, E., Antoniou, C., Grau, J. M. S., & Dimitriou L. (Eds). (2016, November). Can Social Media data augment travel demand survey data?. Proceedings of the 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil (pp. 1642–1647). IEEE. doi:10.1109/ITSC.2016.7795778.10.1109/ITSC.2016.7795778
  4. 4. Cho, E., Myers, S. A., & Leskovec, J. (Eds.). (2011, August). Friendship and mobility. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1082-1090). New York, USA. doi:10.1145/2020408.2020579.10.1145/2020408.2020579
  5. 5. Coelho, M. C., Frey, H. C., Rouphail, N. M., Zhai, H., & Pelkmans, L. (2009). Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on microscale measurements. Transportation Research Part D: Transport and Environment, 14(2), 91-99.10.1016/j.trd.2008.11.005
  6. 6. Downling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software. (Report No. FHWA-HRT-04-040). FHWA, U.S. Department of Transportation.
  7. 7. EC Commission - Strategy for low-emission mobility fromhttps://ec.europa.eu/transport/themes/strategies/news/”
  8. 8. Emisia SA (2014). COPERT DATA (Version 5) [Computer Software], Thessaloniki, Emisia SA.
  9. 9. INE, 2017 Statistes Portugal web portal https://ine.pt
  10. 10. INE, 2018 Spanish Statistics National Institute – https://www.ine.es/
  11. 11. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer. doi:10.1007/978-1-4614-7138-7_1.10.1007/978-1-4614-7138-7_1
  12. 12. Jin, P., Cebelak, M., Yang, F., Zhang, J., Walton, C., & Ran, B. (n.d.). Location-Based Social Networking Data. Transportation Research Record: Journal of the Transportation Research Board, 2430, 72–82. doi:10.3141/2430-08.10.3141/2430-08
  13. 13. Kephalopoulos, S.,. Paviotti, M., & Anfosso-Lédée, F.(2012). Common Noise Assessment Methods in Europe (CNOSSOS-EU). Publications Office of the European Union, Luxemburg, 201e.
  14. 14. Lee, J. H., Gao, S., Janowicz, K., & Goulias, K. G. (2015, July). Can Twitter data be used to validate travel demand models? Paper presented at the 14th International Conference on Travel Behaviour Research, Windsor, UK.
  15. 15. Majumdar, S. R. (2017). The case of public involvement in transportation planning using social media. Case Studies on Transport Policy, 5(1), 121–133. doi:10.1016/j.cstp.2016.11.002.10.1016/j.cstp.2016.11.002
  16. 16. Nair DJ, Gilles F, Chand S, Saxena N, Dixit V. (2019) Characterizing multicity urban traffic conditions using crowdsourced data. Wang Y, editor. PLoS One. Available from: http://dx.plos.org/10.1371/journal.pone.0212845
  17. 17. Ni, M., He, Q., & Gao, J. (Eds.). (2014, January). Using Social Media to Predict Traffic Flow under Special Event Conditions. Proceedings of the 93th Annual Meeting on Transportation Research Board (TRB), Washington D.C., USA. Retrieved from https://trid.trb.org/view.aspx?id=1288769.
  18. 18. Pereira, F.C., Rodrigues, F., Polisciuc, E., & Ben-Akiva, M. (2015). Why so many people? Explaining Nonhabitual Transport Overcrowding with Internet Data. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1370–1379. doi:10.1109/TITS.2014.2368119..
  19. 19. Rashidi, T. H., Abbasi, A., Maghrebi, M., Hasan, S., & Waller, T. S. (2017). Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges. Transportation Research Part C: Emerging Technologies, 75, 197–211. doi:10.1016/j.trc.2016.12.008.10.1016/j.trc.2016.12.008
  20. 20. Ribeiro, S. S., Davis, C. A., Oliveira, D. R. R., Meira, W., Gonçalves, T. S., & Pappa, G. L. (2012, September). Traffic observatory. In Proceedings of the 5th International Workshop on Location-Based Social Networks - LBSN ’12, New York. doi:10.1145/2442796.2442800.10.1145/2442796.2442800
  21. 21. Santos, G. (2017). Road fuel taxes in Europe: Do they internalize road transport externalities?. Transport Policy, 53, 120–134. doi:10.1016/j.tranpol.2016.09.009.10.1016/j.tranpol.2016.09.009
  22. 22. Serna, A., Gerrikagoitia, J.K., Bernabé, U., & Ruiz, T. (2017). Sustainability analysis on Urban Mobility based on Social Media content. Transportation Research Procedia, 24, 1-8. doi:10.1016/j.trpro.2017.05.059.10.1016/j.trpro.2017.05.059
  23. 23. Tafidis, P., Teixeira, J., Bahmankhah, B., Macedo, E., Coelho, M. C., & Bandeira, J. (2017, June). Exploring crowdsourcing information to predict traffic-related impacts. Paper presented at the 17th International Conference on Environment and Electrical Engineering (IEEE), Milan, Italy. doi: 10.1109/EEEIC.2017.7977595.10.1109/EEEIC.2017.7977595
  24. 24. Tasse, D., & Hong J. I. (Eds.). (2014, August). Using Social Media Data to Understand Cities. Proceedings of NSF Workshop on Big Data and Urban Informatics, Chicago. Retrieved from http://repository.cmu.edu/hcii.
  25. 25. Teixeira, J., Fernandes, P., Bandeira, J., & Coelho, M. C. (2017, January). Information Management for Smart and Sustainable Mobility. Poster session presented at 96th Annual Meeting Transportation Research Board (TRB), Washington D.C., USA.
  26. 26. Tian, Y., Zmud, M., Chiu, Y. C., Carey, D., Dale, J., Smarda, D., Lehr, R., & James, R. (2016, January). Quality assessment of social media traffic reports – a field study in Austin, Texas. Paper presented at the 95th Annual Meeting on Transportation Research Board (TRB), Washington D.C., USA.
  27. 27. Tostes, A. I. J., Duarte-Figueiredo, F., Assunção, R., Salles, J., & Loureiro A. A. F. (Eds). (2013, August). From data to knowledge: city wide traffic flows analysis and prediction using Bing Maps. Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA.10.1145/2505821.2505831
  28. 28. Turner, S. M., Eisele, W. L., and Benz, R. J. (1998). Travel Time Data Collection handbook. (Report No. FHWA-PL-98-035). FHWA, U.S. Department of Transportation.
  29. 29. United States Environmental Protection Agency. (2014). Evaporative Emissions from On-road Vehicles in MOVES2014 (Report No. EPA-420-R-14014). Ann Arbor, MI, United States, Environmental Protection Agency (US).
  30. 30. Yang, F., Jin, P. J., Wan, X., & Ran, B. (Eds.). (2014, January). Dynamic Origin-Destination Travel Demand Estimation using Location Based Social Networking Data. Proceedings of the 93th Annual Meeting on Transportation Research Board (TRB), Washington D.C., USA. Retrieved from https://pdfs.semanticscholar.org/af46/0f908bbd51388892ee7b45fa6a33ef343a4c.pdf.
DOI: https://doi.org/10.2478/ttj-2020-0004 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 47 - 60
Published on: Feb 27, 2020
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Jorge M. Bandeira, Pavlos Tafidis, Eloísa Macedo, João Teixeira, Behnam Bahmankhah, Cláudio Guarnaccia, Margarida C. Coelho, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.