Have a personal or library account? Click to login
The Use of Multi-Sensor Video Surveillance System to Assess the Capacity of the Road Network Cover

The Use of Multi-Sensor Video Surveillance System to Assess the Capacity of the Road Network

Open Access
|Feb 2020

References

  1. 1. Zhou, Y., Nejati, H., Do, T., Cheung, N., Cheah, L. (2019) Image-based Vehicle Analysis using Deep Neural Network: A Systematic Study. Available online: https://arxiv.org/pdf/1601.01145.pdf (accessed on 05 May 2019).
  2. 2. Biswas, D., Su, H., Wang, C., Blankenship., J., Stevanovic, A. (2017) An Automatic Car Counting System Using OverFeat Framework. Sensors (Basel). 2017 July, 17(7): 1535. Published online 2017 June 30. DOI: 10.3390/s17071535.10.3390/s17071535553951428665360
  3. 3. Zhang, F., Li, C., Yang, F. (2019) Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation. Sensors 2019, 19(3), 594, https://doi.org/10.3390/s19030594.10.3390/s19030594638709530704152
  4. 4. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014, pp. 580–587.10.1109/CVPR.2014.81
  5. 5. Uijlings, J.R.R., Sande, K.E.A., Gevers, T., Smeulders, A.W.M. (2013) Selective Search for Object Recognition. Int. J. Comput. Vis. 2013, 104, 154–171.
  6. 6. Wang, K., Wang, R., Feng, Y., Zhang, H., Huang, Q., Jin, Y., Zhang, Y. (2014) Vehicle recognition in acoustic sensor networks via sparse representation, in IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2014, pp. 1–4.
  7. 7. Kim, H., Song, B. (2013) Vehicle recognition based on radar and vision sensor fusion for automatic emergency braking, in 13th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2013, pp. 1342–1346.
  8. 8. McKay, T., Salvaggio, C., Faulring, J., Salvaggio, F., McKeown, D., Garrett, A., Coleman, D., Koffman, L. (2012) Passive detection of vehicle loading, in IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2012, pp. 830511–830511.
  9. 9. Mishra, P., Banerjee, B. 2013) Multiple kernel based KNN classifiers for vehicle classification, International Journal of Computer Applications, Vol. 71, No. 6, 2013.
  10. 10. Tang, T., Thou, S., Dag, Z., Lei, L., Zou, H. (2017) Arbitrary-Oriented Vehicle Detection in Aerial Imagery with Single Convolutional Neural Networks. Remote Sens. 2017, 9(11), 1170, https://doi.org/10.3390/rs9111170.10.3390/rs9111170
  11. 11. Zhang, J., Huang, M., Jin, X., Li, X. (2017) A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2. Algorithms 2017, 10, 127.10.3390/a10040127
  12. 12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.10.1109/CVPR.2016.91
  13. 13. Redmon, J., Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. arXiv, 2016, arXiv:1612.08242v1.10.1109/CVPR.2017.690
  14. 14. Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L. (2017) Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining. Sensors 2017, 17, 336.10.3390/s17020336533596028208587
  15. 15. Deng, Z., Sun, H., Zhou, S., Zhao, J., Zou, H. (2017) Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled Region-Based Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3652–3664.
  16. 16. Qu, T., Zhang, Q., Sun, S. (2017) Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks. Multimedia Tools Appl. 2017, 76, 21651–21663.
  17. 17. Buch, N., Velastin, S.A., Orwell, J. (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 2011, 12:920–939. DOI: 10.1109/TITS.2011.2119372.10.1109/TITS.2011.2119372
  18. 18. Daigavane, P.M., Bajaj, P.R. (2010) Real Time Vehicle Detection and Counting Method for Unsupervised Traffic Video on Highways. Int. J. Comput. Sci. Netw. Secur. 2010, 10:112–117.
  19. 19. Chen, S.C., Shyu, M.L., Zhang, C. (2001) An Intelligent Framework for Spatio-Temporal Vehicle Tracking. Proceedings of the 4th IEEE Intelligent Transportation Systems, Oakland, CA, USA. 25–29 August 2001.
  20. 20. Gupte, S., Masoud, O., Martin, R.F., Papanikolopoulos, N.P. (2002) Detection and Classification of Vehicles. IEEE Trans. Intell. Transp. Syst. 2002, 3:37–47. DOI: 10.1109/6979.994794.10.1109/6979.994794
  21. 21. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z. (2018) Single-Shot Refinement Neural Network for Object Detection. arXiv, 2018, arXiv:1711.06897.10.1109/CVPR.2018.00442
  22. 22. Liu, Y., Wang, R., Shan, S., Chen, X. (2018) Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.10.1109/CVPR.2018.00730
  23. 23. Zhou, P. (2018) Scale-Transferrable Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.10.1109/CVPR.2018.00062
  24. 24. Li, S. (2018) 3D-DETNet: a Single Stage Video-Based Vehicle Detector. Computer Science: Computer Vision and Pattern Recognition. arXiv, 2018, arXiv:1801.01769.
  25. 25. Wang, X., Cheng, P., Liu, X., Uzochukwu. (2018) Focal loss sensitive detectors for vehicle surveillance. In: 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). Vol. 2018-May, pp. 1–5.
  26. 26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017) Focal Loss for Dense Object Detection. In: Proceedings of the IEEE International Conference on Computer Vision 2017-Octob, pp. 2999–3007.10.1109/ICCV.2017.324
  27. 27. Hu, X., Xu, X., Xiao, Y., Chen, H., He, S., Qin, J., Heng, P. (2019) A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems, 20(3). Mar 2019, pp. 1010–1019.10.1109/TITS.2018.2838132
  28. 28. Gandhi, R. (2018) R-CNN, Fast R-CNN, Faster R-CNN, YOLO  Object Detection Algorithms. July 9, 2018. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e.
  29. 29. Basto, M, Pereira, J. (2012) An SPSS R-Menu for Ordinal Factor Analysis. Journal of Statistical Software, 46(4), pp. 1–29.
DOI: https://doi.org/10.2478/ttj-2020-0002 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 15 - 31
Published on: Feb 27, 2020
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Vladimir Shepelev, Sergei Aliukov, Kseniya Nikolskaya, Arkaprava Das, Ivan Slobodin, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.