Have a personal or library account? Click to login
Metamodelling of Inventory-Control Simulations Based on a Multilayer Perceptron Cover

Metamodelling of Inventory-Control Simulations Based on a Multilayer Perceptron

Open Access
|Jun 2019

References

  1. 1. Bellman, R. (1957) Dynamic Programming. Princeton, Princeton University Press.
  2. 2. Blanning, R.W. (1975) The construction and implementation of metamodels, Simulation, 24, 177–184. DOI:10.1177/003754977502400606.10.1177/003754977502400606
  3. 3. Buffa, E.S. and Taubert, W.H. (1972) Production-inventory systems planning and control (NTIS No. 658.4032 B8).
  4. 4. Byrne, M.D. (2013) How many times should a stochastic model be run? An approach based on confidence intervals. In: Proceedings of the 12th International conference on cognitive modelling, Ottawa, July 2013.
  5. 5. Cawley, G.C. and Talbot, N.L. (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11(Jul), 2079–2107.
  6. 6. Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303–314.10.1007/BF02551274
  7. 7. Domschke, W., Drexl, A., Klein, R. and Scholl, A. (2015) Einführung in Operations Research. 9th Ed., Berlin, Heidelberg: Springer Gabler.10.1007/978-3-662-48216-2
  8. 8. Duan, Q. and Liao, T.W. (2013) Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands. International Journal of Production Economics, 194–204.10.1016/j.ijpe.2012.11.004
  9. 9. DynamicAction and IHL-group, (2015) Research Study: Retailers and the Ghost Economy $1.75 Trillion Reasons to be Afraid.
  10. 10. Farhat, J. and Owayjan, M. (2017) ERP Neural Network Inventory Control. Procedia computer science, 114, 288-295.10.1016/j.procs.2017.09.039
  11. 11. Glorot, X., Bordes, A. and Bengio, Y. (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, Lauderdale, FL, USA, June 2011, pp. 315-323.
  12. 12. Haykin, S.S. (2009) Neural networks and learning machines. Pearson (ISBN-10: 0131471392).
  13. 13. Hochmuth, C.A. and Kochel, P. (2012) How to order and transship in multi-location inventory systems: The simulation optimization approach. International Journal of Production Economics, 140, 646–654.10.1016/j.ijpe.2011.09.021
  14. 14. Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), 251–257.10.1016/0893-6080(91)90009-T
  15. 15. Hurlimann, T. (2007) Index notation in mathematics and modelling language LPL: theory and exercises. Department of Informatics University of Fribourg.
  16. 16. IHL-group and Buzek G. (2015) Research Study: We Lost Australia! Retail’s $1.1 Trillion Inventory Distortion Problem.
  17. 17. Iverson, K.E. (1962) A programming language. In: Proceedings of the spring joint computer conference. ACM, May 3, 1962, pp. 345-351.10.1145/1460833.1460872
  18. 18. Jackson, I. (2019) GitHub repository “metainventory” - https://github.com/Jackil1993/metainventory, last accessed 2019/04/05.
  19. 19. Jackson, I. and Tolujevs, J. (2019) The Discrete-Event Approach to Simulate Stochastic Multi-Product (Q, r) Inventory Control Systems. Information Modelling and Knowledge Bases XXX, 312, 32–39.
  20. 20. Jackson, I., Tolujevs, J. and Reggelin, T. (2018) The Combination of Discrete-Event Simulation and Genetic Algorithm for Solving the Stochastic Multi-Product Inventory Optimization Problem. Transport and Telecommunication Journal, 19(3), 233–243.10.2478/ttj-2018-0020
  21. 21. Jad, F. and Owayjan, M. (2017) ERP Neural Network Inventory Control. Procedia Computer Science, 114, 288–295.10.1016/j.procs.2017.09.039
  22. 22. Jalali, H. and Nieuwenhuyse, I.V. (2015) Simulation optimization in inventory replenishment: a classification. IIE Transactions, 47(11), 1217–1235.10.1080/0740817X.2015.1019162
  23. 23. Kingma, D.P. and Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  24. 24. Law, A.M. and Kelton, W.D. (2000) Simulation modelling and analysis. New York: McGraw-Hill.
  25. 25. Lechevalier, D., Hudak, S., Ak, R., Lee, Y.T., and Foufou, S. (2015) A neural network meta-model and its application for manufacturing. In: Proceedings of the IEEE International Conference on Big Data, Santa Clara, USA, 2015.10.1109/BigData.2015.7363903
  26. 26. Lin, Y., Shie, J. and Tsai, C. (2009) Using an artificial neural network prediction model to optimize work-in-process inventory level for wafer fabrication. Expert Systems with Applications 36(2) 3421–3427.10.1016/j.eswa.2008.02.009
  27. 27. Merkuryeva, G. (2004) Metamodelling for simulation applications in production and logistics. In: Proceedings of the Sim-Serv Workshop: Roadmap of simulation in manufacturing and logistics, pp. 1-6.
  28. 28. Prestwich, S.D., Tarim, S.A., Rossi, R. and Hnich, B. (2012) A neuroevolutionary approach to stochastic inventory control in multi-echelon systems. International Journal of Production Research, 50, 2150–2160.10.1080/00207543.2011.574503
  29. 29. Razali, N.M. and Wah, Y.B. (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modelling and analytics, 2(1), 21–33.
  30. 30. Tolujev, J., Lorenz, P., Beier, D. and Schriber, T.J. (1998) Assessment of simulation models based on trace-file analysis: a metamodeling approach. In: Proceedings of the Winter Simulation Conference. IEEE. December 1998, pp. 443-450.10.1109/WSC.1998.745020
  31. 31. Tsai, S.C. and Zheng, Y.X. (2013) A simulation optimization approach for a two-echelon inventory system with service level constraints. European Journal of Operational Research, 229, 364–374.10.1016/j.ejor.2013.03.010
  32. 32. Winskel, G. (2010) Set theory for computer science. Unpublished lecture notes.
DOI: https://doi.org/10.2478/ttj-2019-0021 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 251 - 259
Published on: Jun 26, 2019
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ilya Jackson, Jurijs Tolujevs, Sebastian Lang, Zhandos Kegenbekov, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.