Have a personal or library account? Click to login
A Decision Tree Approach for Achieving High Customer Satisfaction at Urban Interchanges Cover

A Decision Tree Approach for Achieving High Customer Satisfaction at Urban Interchanges

Open Access
|Jun 2018

References

  1. 1. ADB (2015) Improving interchanges: Introducing best practices on multimodal interchange hub development in the People’s Republic of China. ASIAN DEVELOPMENT BANK.
  2. 2. Acharia, T., Yang, I., Lee, D. (2015) Application of J48 Decision Tree for the Identification of Water Bodies Using Landsat 8 OLI Imagery. In: 2nd International Electronic Conference on Sensors and Applications. Online.
  3. 3. Ahishakiye, E., Omulo, E., Taremwa, D., Niyonzima, I. (2017) Crime Prediction Using Decision Tree (J48) Classification Algorithm, International Journal of Computer and Information Technology, 6(3): 188-195.
  4. 4. Allmuali, H., Kaneda, S., Akiba, Y. (2002) Development and Applications of Decision Trees. In: Expert Systems, Vol.1, Academic Press.10.1016/B978-012443880-4/50047-8
  5. 5. Breiman, L., Friedman, J H., Olshen, R.A., and Stone, C.J. (1984) Classification and regression trees. Monterey, CA: Wadsworth.
  6. 6. de Ona, J., de Ona, R., Calvo, F. (2011) A Classification Tree Approach to Identify Key Factors of Transit Service Quality. Expert Systems with Applications, 39: 11164-11171.10.1016/j.eswa.2012.03.037
  7. 7. de Ona, J., de Ona, R., Lopez, G. (2016) Transit Service Quality Analysis and Decision Trees: A Step Forward to Personalized Marketing in Public Transportation. Transportation, 43(5): 725-747.10.1007/s11116-015-9615-0
  8. 8. Dota, M., Cugnasca, C., Barbosa, D. (2015) Comparative Analysis of Decision Tree Algorithms on Quality of Water Contaminated with Soil. Ciencia Rural, 45(2): 267-273.10.1590/0103-8478cr20140147
  9. 9. European Commission (2001) White Paper “European transport policy for 2010: Time to decide”. CEC.
  10. 10. Ewing, R., Schmid, T., Killingsworth, R., Zlot, A. and Raudenbush, S. (2008) Relationship between urban sprawl and physical activity, obesity and morbidity. In: J. M. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, U. Simon and C. ZumBrunnen (Eds). New York: Urban Ecology, 567–582.10.1007/978-0-387-73412-5_37
  11. 11. Gao, W., Tang, W., Wang, X. (2013) Application of an Improved C4.5 Algorithm in Performance Analysis. Applied Mechanics and Materials, 380-384: 1681-1684.10.4028/www.scientific.net/AMM.380-384.1681
  12. 12. Kapoor, P., Rani, R. (2015) Efficient Decision Tree Algorithm Using J48 and Reduced Error Pruning. International Journal of Engineering Research and General Science, 3(3): 1613-1621.
  13. 13. Kaur, G., Chhabra, A. (2014) Improved J48 Classification Algorithm for the Prediction of Diabetes. International Journal of Computer Applications, 98(22): 13-17.10.5120/17314-7433
  14. 14. Kumar, A. (2014) Design and Applications of Decision Trees. International Journal of Computer Science Trends and Technology, 2(4): 94-98.
  15. 15. Maleki-Entezari, R., Rezaei, A., Minaei-Bidgoli, B. (2009) Comparison of Classification Methods Based on the Type of Attributes and Sample Size. Journal of Convergence Information Technology, 4(3): 94-102.10.4156/jcit.vol4.issue3.14
  16. 16. Nathanail, E., Adamos, G., Tsami, M. (2016) Why Interchanges? Understanding intermodality, In: A.Monzon and F.d.Ciommo (eds), CITY-HUBs: Sustainable and Efficient Urban Transport Interchanges, 13-36.10.1201/b19519-4
  17. 17. Patil, T., Sherekar, S. (2013) Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification. International Journal of Computer Science and Applications, 6(2): 256-261.
  18. 18. Quinlan, (1993) C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann.
  19. 19. RD PAD, (2017) The economic profile of Riga 2017. Riga: Riga city council Development department.
  20. 20. Song, Y., Lu, Y. (2015) Decision Tree Methods: Applications for Classification and Prediction. Shanghai Archives of Psychiatry, 27(2): 130-135.
  21. 21. Tsami, M., Nathanail, E. (2016) Guidance Provision for Increasing Quality of Service of Public Transport. In: 16th Conference on Reliability and Statistics in Transportation and Telecommunication. Riga, Latvia.
  22. 22. Tsami M., Budilovich (Budiloviča) E., Magginas V., Adamos G., Yatskiv (Jackiva) I. (2018) Assessing the Design and Operation of Riga’s International Coach Terminal. In: Kabashkin I., Yatskiv I., Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2017. Lecture Notes in Networks and Systems, vol.36. Springer, 497-50610.1007/978-3-319-74454-4_48
  23. 23. Vaadaala, V., Rao, R., Rao, V. (2013) Classification of Web Services Using JForty Eight. International Journal of Electronics Communication and Computer Engineering, 4(6): 181-184.
  24. 24. Vuchic, V. R. (2005) Urban Transit: Operations, Planning, and Economics. New York: John Wiley.
  25. 25. Yan, N., Ju, W., Fang, H., Sato, R. (2015) Application of J48 Decision Tree Classifier in Emotion Recognition Based on Chaos Characteristics. In: International Conference on Automation, Mechanical Control and Computational Engineering. Changsha, China.
DOI: https://doi.org/10.2478/ttj-2018-0016 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 194 - 202
Published on: Jun 26, 2018
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Maria Tsami, Giannis Adamos, Eftihia Nathanail, Evelina Budilovich Budiloviča, Irina Yatskiv Jackiva, Vissarion Magginas, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.