Have a personal or library account? Click to login
Some Approaches to the Rolling Wheels’ Dynamics Modelling in the Weight-in-Motion Problem Cover

Some Approaches to the Rolling Wheels’ Dynamics Modelling in the Weight-in-Motion Problem

Open Access
|Feb 2013

References

  1. 1. Jacob B., Feypell-de la Beaumelle, V. (2010). Improving truck safety: Potential of weigh-in-motion technology. IATSS Research, 34, 9-15.10.1016/j.iatssr.2010.06.003
  2. 2. Shengyao Jia et al. (2010). Signal acquisition and processing of the moving vehicle weighting system. WSEAS Trans. on Signal Proc., 3(6), 113-122.
  3. 3. Dorleus J. et al. (2009). A fibre optic seismic sensor for unattended ground sensing applications. ITEA Journ., 30, 455-460.
  4. 4. Mimbela, L. E. Y., Klein, L. A. (2005). Summary of vehicle detection and surveillance technologiesused in intelligent transportation systems. New Mexico: New Mexico State University.
  5. 5. Mazurek, B. et al. (2001). Assessment of vehicle weight measurement method using PVDF transducers. J. of Electrostatics, 51-52, 76-81.10.1016/S0304-3886(01)00043-2
  6. 6. US Dept. of Commerce. (1997). Development of fibre optic dynamic WIM systems. Final Report. USA: Nat. Techn. Inf. Service.
  7. 7. Sheriff, R E., Geldart, L. P. (1985). Exploration seismology, V. 1. Cambridge: Cambridge Univ. Press.
  8. 8. Tatom, F. B., Herndon, G. W. (Feb. 2004). US Pat. No 6,692,567 B1. USA.
  9. 9. Tarasik, V. P. (2006). Theory of automobile motion. Saint-Petersburg: BHW. (In Russian)
  10. 10. Osinovskaya, V. A. (2006). About evaluation and prediction of automobile road vibrations. (In Russian), Retrieved 2006, from http://science-bsea.narod.ru/2006/story2006/osinovskaya_vopros.htm
  11. 11. Mimbela, L.-E. Y., Pate, J., Copeland, S., Kent, P. M., Hamrick, J. (April 2003). Applications of Fibre Optic Sensors in Weigh-in-Motion (WIM) Systems for monitoring truck weights on pavements and structures. Final report on research project. New Mexico State University.
  12. 12. Levin, M. A., Fufayev, N. A. (1989). Theory of deformable rolling wheels. Moscow: Science. (In Russian)
  13. 13. Moazami, D., Muniandy, R., Hamid, H., Md.Yusoff, Z. (2011). Effect of tire footprint area in pavement response studies. International Journal of the Physical Sciences, 6(21), 5040-5047.
  14. 14. Balabin, I. V. (Ed.) (1985). Automotive and tractor wheels: Handbook. Moscow: Mashinostroenie. (In Russian)
  15. 15. Fernando, E. G., Musani, D., Dae-Wook, P., and Liu, W. (2006). Evaluation of Effects of Tire Sizeand Inflation Pressure on Tire Contact Stresses and Pavement Response. Project 0-4361. Texas, USA: Transportation Institute, College Station.
  16. 16. Smith, N. D. (2004). Understanding Parameters Influencing Tire Modelling. Colorado, USA: Colorado State University. Formula SAE Platform.
  17. 17. Batenko, A., Grakovski, A., Kabashkin, I., Petersons, E., Sikerzhicki, Y. (2011). Weight-in-Motion (WIM) Measurements by Fiber Optic Sensor: Problems and Solutions. Transport and Telecommunication, 12(4), 27-33.
  18. 18. Peters, B., Koniditsiotis, C. (2000). Weigh-In-Motion Technology, Intermediate Report, ©Austroads Inc., No. AP-R168/00. Burwood Highway, Australia: ARRB Transport Research Ltd.
  19. 19. Loo van, F. J. (2001). Project WIM-Hand, 1st interim report, DWW-Publication: IB-R-01-09, Road and Hydraulic Engineering Institute, DG Rijkswaterstaat.
  20. 20. Bushman, Rob, Pratt, Andrew J. (2002). Weigh In Motion Technology - Economics and Performance. In Proc. of NATMEC ’02. Charlotte. North Carolina: Warren Publishing.
  21. 21. Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Siegel, G. II., Jr., Cole, J. II., Rashleighand, S. C., Priest, R. G. (1982). Optical Fiber Sensor Technology. IEEE Journal of Quantum Electronics, QE-18, pp. 626-665.10.1109/JQE.1982.1071566
  22. 22. Scheuter, F. (1997). General Guide for Weighing with Portable Wheel Load Scales: HAENNI, Document P 1196. Maryland, Baltimore: Interscience Publishers.
  23. 23. Taylor, B., Klashinsky, R. (1995). New Application for Weigh-In-Motion Technology. TrafficTechnology International. Surrey, England: UK & International Press.
  24. 24. Sivuhin, D. (2005). General Physics Course. In Vol. I, Mechanics, 4th Edition (560 p.). Moscow: FIZMALIT; MFTI Publ. (In Russian)
  25. 25. Widrow, B., Stearns, S. (1989). Adaptive Signal Processing. Moscow: Radio and Svjaz. (In Russian)
  26. 26. Shakun, P., Sikerzhicky, Y. (2012). Adaptive method’s applications for the identification systems in dynamic weighing. In Proceedings of the 12th International Conference “Reliability and Statistics in Transportation and Communication” (RelStat’12), 17-20 October 2012 (pp. 296-306). Riga, Latvia: TTI.
  27. 27. Malla, Ramesh B., Sen, Amlan, Garrick, Norman W. (2008). A Special Fiber Optic Sensor for Measuring Wheel Loads of Vehicles on Highways. Sensors, 8, 2551-2568. Retrieved April 4, 2008, from MDPI database on the World Wide Web: http:// www.mdpi.org/sensors10.3390/s8042551367343127879835
  28. 28. SENSORLINE GmbH. (2010). SPT Short Feeder Spliceless Fiber Optic Traffic Sensor: productdescription. Sensor line, GmbH. Retrieved January 7, 2011, from http://sensorline.de/home/pages/downloads.php
  29. 29. O’Brien, E. J., Jacob, B. (1998). European Specification on Vehicle Weigh-in-Motion of Road Vehicles. In Proceedings of the 2nd European Conference on Weigh-in-Motion of Road Vehicles, 1998 (pp. 171-183). Luxembourg: Office for Official Publications of the European Communities.
  30. 30. Mesco, A. (1984) Digital Filtering: Applications in Geophysical Exploration for Oil, v. 1-2. Budapest: Academiai Kiado.
DOI: https://doi.org/10.2478/ttj-2013-0007 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 57 - 78
Published on: Feb 21, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Alexander Grakovski, Yuri Krasnitski, Igor Kabashkin, Victor Truhachov, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons License.