References
- Amankulova K., Farmonov N., Akramova P., Tursunov I. and Mucsi L., 2023 – Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression, Heliyon, 9, 6, e17432.
- Brown De Colstoun E. C., Story M. H., Thompson C., Commisso K., Smith T. G. and Irons J. R., 2003 – National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier, Remote Sensing of Environment, 85, 3, 316-327.
- Cao Q., Huang H., Hong Y., Huang X., Wang S., Wang L. and Wang L., 2022 – Modeling intra-urban differences in thermal environments and heat stress based on local climate zones in central Wuhan, Building and Environment, 225, 109625.
- Dai X., Wang L., Li X., Gong J. and Cao Q., 2023 – Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration, Science of The Total Environment, 864, 161045.
- Deng Y., Shao Z., Dang C., Huang X., Wu W., Zhuang Q. and Ding Q., 2023 – Assessing urban wetlands dynamics in Wuhan and Nanchang, China, Science of The Total Environment, 901, 165777.
- Ding W. and Chen H., 2022 – Urban-rural fringe identification and spatial form transformation during rapid urbanization: A case study in Wuhan, China, Building and Environment, 226, 109697.
- Dou Y., Yu X., Liu L., Ning Y., Bi X. and Liu J., 2022 – Effects of hydrological connectivity project on heavy metals in Wuhan urban lakes on the time scale, Science of The Total Environment, 853, 158654.
- Fan F., Wen X., Feng Z., Gao Y. and Li W., 2022 – Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China, Applied Geography, 138, 102619.
- Fu, C., Jiang, Z., Guan, Z., He, J. and Xu, Z., 2008 – Impacts of Climate Change on Water Resources and Agriculture in China”, In: Fu, C., Jiang, Z., Guan, Z., He, J., Xu, Z. (eds), Regional Climate Studies of China. Regional Climate Studies, Springer, Berlin, Heidelberg.
- Geng L., Zhao X., An Y., Peng L. and Ye D., 2022 – Study on the Spatial Interaction between Urban Economic and Ecological Environment—A Case Study of Wuhan City, International Journal of Environmental Research and Public Health, 19, 16, 10022.
- Godinho S., Guiomar N. and Gil A., 2016 – Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal, International Journal of Applied Earth Observation and Geoinformation, 49, 151-162.
- Guan D., He X., He C., Cheng L. and Qu S., 2020 – Does the urban sprawl matter in Yangtze River Economic Belt, China?, An integrated analysis with urban sprawl index and one scenario analysis model, Cities 99, 102611.
- He Q., Tan R., Gao Y., Zhang M., Xie P. and Liu Y., 2018 – Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China, Habitat International, 72, 57-65.
- Hu S., Tong L., Frazier A. E. and Liu Y., 2015 – Urban boundary extraction and sprawl analysis using Landsat images: A case study in Wuhan, China, Habitat International, 47, 183-195.
- Hu Y., Li L., Li B., Peng L., Xu Y., Zhou X., Li R. and Song K., 2023 – Spatial variations and ecological risks assessment of pharmaceuticals and personal care products (PPCPs) in typical lakes of Wuhan, China, Process Safety and Environmental Protection, 174, 828-837.
- Huang X., Wang H. and Xiao F., 2022 –Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China, Land Use Policy, 112, 105850.
- Joshi P. P., Wynne R. H. and Thomas A., 2019 – Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8, International Journal of Applied Earth Observation and Geoinformation, 82, 101898.
- Kana C. E. and Etouna J. E., 2006 – Apport de trois méthodes de détection des surfaces brûlées par imagerie Landsat ETM+ : application au contact forêt-savane du Cameroun, Cybergeo: European Journal of Geography, Environnement, Nature, Paysage, 357. (in French)
- Lan H., Zheng P. and Li Z., 2021 – Constructing urban sprawl measurement system of the Yangtze River economic belt zone for healthier lives and social changes in sustainable cities, Technological Forecasting and Social Change, 165, 120569.
- Lebaut S. and Manceau, L., 2015 – Potentialités des images Landsat pour l'identification et la délimitation de zones humides à l'échelle régionale : l'exemple de l'Est de la France, Physio-Géo, 9, 1, 125-140. (in French)
- Lemenkova P., 2022a – Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts, Data 7, 6, 74.
- Lemenkova P., 2022b – Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate, ISPRS International Journal of Geo-Information 11, 9, 473.
- Lemenkova P., 2023a – Image Segmentation of the Sudd Wetlands in South Sudan for Environmental Analytics by GRASS GIS Scripts, Analytics, 2, 3, 745-780.
- Lemenkova P., 2023b – A GRASS GIS Scripting Framework for Monitoring Changes in the Ephemeral Salt Lakes of Chotts Melrhir and Merouane, Algeria, Applied System Innovation 6, 4, 61.
- Lemenkova P., 2023c – Monitoring Seasonal Fluctuations in Saline Lakes of Tunisia Using Earth Observation Data Processed by GRASS GIS, Land, 12, 11, 1995.
- Lemenkova P., 2024 ‒ Exploitation d'images satellitaires Landsat de la région du Cap (Afrique du Sud) pour le calcul et la cartographie d'indices de végétation à l'aide du logiciel GRASS GIS, Physio-Géo, 20, 113-129.
- Li G. and Li F., 2019 – Urban sprawl in China: Differences and socioeconomic drivers, Science of The Total Environment, 673, 367-377.
- Liu D., Clarke K. C. and Chen N., 2020 – Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area, Computers, Environment and Urban Systems, 84, 101545.
- Liu D., Chen N., Zhang X., Wang C. and Du W., 2020 – Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin, ISPRS Journal of Photogrammetry and Remote Sensing, 159, 337-351.
- Long D., Du J. and Xin Y., 2023 – Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China, Resources Policy, 85, 103915.
- Mahmoud M. S. A., 2021 – Classification of high-resolution satellite images from urban areas based hybrid supporting vector machines and Multi-instance learning, International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 1-4.
- Mountrakis G. and Heydari S. S., 2023 – Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits, ISPRS Journal of Photogrammetry and Remote Sensing, 200, 106-119.
- Nagaraj R. and Kumar L. S., 2023 – Surface water body extraction and Change Detection Analysis using Machine Learning Algorithms: A Case study of Vaigai Dam, India, International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, 1-6.
- Shirazi R. A., Shahbazi F., Rezaei H. and Biswas A., 2024 – Multi-property digital soil mapping at 30-m spatial resolution down to 1 m using extreme gradient boosting tree model and environmental covariates, Remote Sensing Applications: Society and Environment, 33, 101123.
- Selvaraju S., Jancy P. L., Vinod Kumar D., Prabha R., Karthikeyan C. and Babu D., 2021 – Support Vector Machine based Remote Sensing using Satellite Data Image, 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 871-874.
- Shendryk Y., Rossiter-Rachor N. A., Setterfield S. A. and Levick S. R., 2020 – Leveraging High-Resolution Satellite Imagery and Gradient Boosting for Invasive Weed Mapping, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4443-4450
- Tan R., Liu Y., Zhou K., Jiao L. and Tang W., 2015 – A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China, Computers, Environment and Urban Systems, 49, 15-29.
- Teng, M., Zhou, Z., Wang, P., Xiao, W., Wu, C. and Lord E., 2016 – Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area, Environmental Management, 57, 601–619.
- Tong L., Hu S. and Frazier A. E., 2019 – Hierarchically measuring urban expansion in fast urbanizing regions using multi-dimensional metrics: A case of Wuhan metropolis, China, Habitat International, 94, 102070
- Wang Q. and Wang H., 2022 – Spatiotemporal dynamics and evolution relationships between land-use/land cover change and landscape pattern in response to rapid urban sprawl process: A case study in Wuhan, China, Ecological Engineering, 182, 106716.
- Wu D., Zheng L., Wang Y., Gong J., Li J. and Chen Q., 2024 – Characteristics of urban expansion in megacities and its impact on water-related ecosystem services: A comparative study of Chengdu and Wuhan, China, Ecological Indicators, 158, 111322.
- Xing S., Yang S., Sun H. and Wang Y., 2023 – Spatiotemporal Changes of Terrestrial Carbon Storage in Rapidly Urbanizing Areas and Their Influencing Factors: A Case Study of Wuhan, China, Land, 12, 12, 2134.
- Yuan Q. and Zhu J., 2019 – Logistics sprawl in Chinese metropolises: Evidence from Wuhan, Journal of Transport Geography, 74, 242-252.
- Zhang L., Zhang M. and Wang Q., 2023 – Monitoring of subpixel impervious surface dynamics using seasonal time series Landsat 8 OLI imagery, Ecological Indicators, 154, 110772.
- Zheng Z., Yang B., Liu S., Xia J. and Zhang X., 2023 – Extraction of impervious surface with Landsat based on machine learning in Chengdu urban, China, Remote Sensing Applications: Society and Environment, 30, 100974
- Zeng C., Liu Y., Stein A. and Jiao L., 2015 – Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China, International Journal of Applied Earth Observation and Geoinformation, 34, 10-24
- Zhou X., Wu B., Liu Y., Zhou . and Cheng W., 2023 – Synergistic effects of heat and carbon on sustainable urban development: Case study of the Wuhan Urban Agglomeration, Journal of Cleaner Production, 425, 138971.