Have a personal or library account? Click to login
Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning By SAGA GIS Cover

Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning By SAGA GIS

Open Access
|Mar 2021

References

  1. 1. Amenu B. T. and Mamo G. S., 2018 ‒ Review on wetland ecosystem destruction, International Journal of Scientific Research in Civil Engineering, 2, 2, 5-15.
  2. 2. Asangwe C. K., 2006 – The Douala Coastal Lagoon Complex, Cameroon, Environmental Issues, in Administering Marine Spaces: International Issues, Denmark, 20.
  3. 3. Asangwe C. K., 2009 – Monitoring wetlands deterioration in the Cameroon coastal lowlands: implications for management, Procedia Earth and Planetary Science, 1, 1, 1010-1015.10.1016/j.proeps.2009.09.156
  4. 4. Asomani-Boateng R., 2019 ‒ Urban wetland planning and management in Ghana: a disappointing implementation, Wetlands, 39, 251-261.10.1007/s13157-018-1105-7
  5. 5. Bannari A., Morin D., Bonn F. and Huete A., 1995 – A review of vegetation indices, Remote Sensing Reviews, 13, 95-120.10.1080/02757259509532298
  6. 6. Banoho L. P. R. K., Zapfack L., Weladji R. B., Djomo C. C., Nyako M. C., Nasang J. M., Tagnang M. D. and Mbobda R. B. T., 2020 – Biodiversity and carbon sequestration potential in two types of tropical rainforest, Cameroon, Acta Oecologica, 105, 103562.10.1016/j.actao.2020.103562
  7. 7. Baret F. and Guyot G., 1991 – Potential and limitations of vegetation indices for LAI and APAR assessment, Remote Sensing of Environment, 104, 88-95.
  8. 8. Beatty W. S., Kesler D. C., Webb E. B., Raedeke A. H., Naylor L. W. and Humburg D. D., 2014 ‒ The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design, Biological Conservation, 176, 144-152.10.1016/j.biocon.2014.05.018
  9. 9. Brock T. C. M. and van Vierssen W. 1992 ‒ Climatic change and hydrophytes-dominated communities in inland wetland ecosystems, Wetlands Ecology and Management, 2, 37-49.
  10. 10. Bosma C., Glenk K. and Novo P., 2017 ‒ How do individuals and groups perceive wetland functioning? Fuzzy mapping of wetland perceptions in Uganda, Land Use Policy, 60, 181-196.10.1016/j.landusepol.2016.10.010
  11. 11. Bontemps S., Arias M., Cara C., Dedieu G., Guzzonato E., Hagolle O., Inglada J., Morin D., Rabaute T., Savinaud M., Sepulcre G., Valero S., Defourny P. and Koetz B., 2015 – Sentinel-2 for agriculture: supporting global agriculture monitoring, 2015 IEEE Symposium, 4185-4188.10.1109/IGARSS.2015.7326748
  12. 12. Böhner J., McCloy K. R. and Strobl J., 2006 – SAGA – Analysis and modelling applications, Göttinger Geographische Abhandlungen, 115, 130.
  13. 13. Campbell J. B., 2002 ‒ Introduction to remote sensing, Guilford Press, 667.
  14. 14. Claverie M., Ju J., Masek J. G., Dungan J. L., Vermote E. F., Roger J.-C., Skakun S. V. and Justice C., 2018 – The Harmonized Landsat and Sentinel-2 surface reflectance dataset, Remote Sensing of Environment, 219, 145-161.10.1016/j.rse.2018.09.002
  15. 15. Clewley D., Bunting P., Shepherd J., Gillingham S., Flood N., Dymond J., Lucas R., Armston J. and Moghaddam M., 2014 – A Python-Based Open Source System for Geographic Object-Based Image Analysis Utilizing Raster Attribute Tables, Remote Sensing, 6, 7, 6111-6135.10.3390/rs6076111
  16. 16. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., and Böhner J., 2015 – System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 8, 1991-2007.10.5194/gmd-8-1991-2015
  17. 17. Cushman S. A., McGarigal K. and Neel M. C., 2008 – Parsimony in landscape metrics: strength, universality, and consistency, Ecological Indicators, 8, 691-703.10.1016/j.ecolind.2007.12.002
  18. 18. Crippen R. E., 1990 – Calculating the vegetation index faster, Remote Sensing of Environment, 34, 71-73.10.1016/0034-4257(90)90085-Z
  19. 19. Deering D. W., Rouse J. W., Haas R. H. and Schell J. A., 1975 – Measuring “Forage Production” of Grazing Units From Landsat MSS Data, Proceedings of the 10th International Symposium on Remote Sensing of Environment, 2, 1169-1178.
  20. 20. Fokeng M. R. and Meli M. V., 2015 ‒ Modelling drivers of forest cover change in the Santchou Wildlife Reserve, West Cameroon using remote sensing and land use dynamic degree indexes, Canadian Journal of Tropical Geography, 2, 2, 29-42, http://laurentian.ca/cjtg.
  21. 21. Fokeng R. M., Forje W. G., Meli V. M. and Bodzemo B. N., 2020 ‒ Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon, The Egyptian Journal of Remote Sensing and Space Sciences, 23, 113-124.10.1016/j.ejrs.2018.12.002
  22. 22. Fonkou T., Télesphore B. N., Julius B. K., Nguetsop V. F., Lekeufack M., Motue E. S. T., Youga M. K. D. and Mboujda M. F. M., 2017 ‒ Ethnobotanical study on wetland macrophytes of medicinal importance in the Western Highlands of Cameroon, Cameroon Journal of Experimental Biology, 11, 1, 23. DOI: 10.4314/cajeb.v11i1.3.10.4314/cajeb.v11i1.3
  23. 23. Fritz S., See L., McCallum I., You L., Bun A., Moltchanova E., Duerauer M., Albrecht F., Schill C., Perger C., Havlik P., Mosnier A., Thornton P., Wood-Sichra U., Herrero M., Becker- Reshef I., Justice C., Hansen M., Gong P., Abdel Aziz S., Cipriani A., Cumani R., Cecchi G., Conchedda G., Ferreira S., Gomez A., Haffani M., Kayitakire F., Malanding J., Mueller R., Newby T., Nonguierma A., Olusegun A., Ortner S., Rajak D. R., Rocha J., Schepaschenko D., Schepaschenko M., Terekhov A., Tiangwa A., Vancutsem C., Vintrou E., Wenbin W., van der Velde M., Dunwoody A., Kraxner F. and Obersteiner M., 2015 ‒ Mapping global cropland, Global Change Biology, 21, 1980-1992.10.1111/gcb.12838
  24. 24. Gao G., 1996 ‒ NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, 58, 257-266.10.1016/S0034-4257(96)00067-3
  25. 25. Hagolle O., Kadiri M. and Morin D., 2017 – Sentinel-2 Agriculture ‒ Detailed Processing Model for Monthly Synthesis product, Sen2Agri, Université catholique de Louvain, 1-12.
  26. 26. Huete A. R. 1988 – A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 25, 3, 295-309.
  27. 27. Jurgens C., 1997 ‒ The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data, International Journal of Remote Sensing, 18, 3583-3594.10.1080/014311697216810
  28. 28. Klaučo M., Gregorová B., Stankov U., Marković V. and Lemenkova P., 2013a ‒ Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences, 5, 1, 28-42.10.2478/s13533-012-0120-0
  29. 29. Klaučo M., Gregorová B., Stankov U., Marković V. and Lemenkova P., 2013b ‒ Interpretation of landscape values, typology and quality using methods of spatial metrics for ecological planning, Environmental and Climate Technologies, October 14, 2013, Riga, Latvia, 2.
  30. 30. Klaučo M., Gregorová B., Stankov U., Marković V. and Lemenkova P., 2014 ‒ Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia, Ecology and Environmental Protection, March 19-20, Minsk, Belarus, 85-90.
  31. 31. Klaučo M., Gregorová B., Koleda P., Stankov U., Marković V. and Lemenkova P., 2017 ‒ Land planning as a support for sustainable development based on tourism: A case study of Slovak rural region, Environmental Engineering and Management Journal, 2, 1, 6, 449-458.10.30638/eemj.2017.045
  32. 32. Lambi C. M., Kimengsi J. N., Kometa C. G. and Tata E. S., 2012 ‒ Them anagement and challenges of protected areas and the sustenance of local livelihoods in Cameroon, Environment and Natural Resources Research, 2, 3, 10-18.10.5539/enrr.v2n3p10
  33. 33. Lang N., Schindler K. and Wegner J. D., 2019 – Country-wide high-resolution vegetation height mapping with Sentinel-2, Remote Sensing of Environment, 233, 111347.10.1016/j.rse.2019.111347
  34. 34. Lawhead J. 2019 ‒ This library reads and writes ESRI shapefiles in pure Python, https://github.com/GeospatialPython/pyshp.
  35. 35. Lemenkova P., 2011 ‒ Seagrass mapping and monitoring along the coasts of Crete, Greece, M.Sc. Thesis, University of Twente, Enschede, Netherlands, 158.
  36. 36. Lemenkova P., Promper C. and Glade T., 2012 ‒ Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria, Protecting Society through Improved Understanding. 11th Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes, June 2-8, Banff, Canada, 279-285.
  37. 37. Lemenkova P., 2014 ‒ Detection of vegetation coverage in urban agglomeration of Brussels by NDVI indicator using cognition software and remote sensing measurements, in GIS and remote sensing, November 17-19, 2014, Tsaghkadzor, Armenia, 112-119.
  38. 38. Lemenkova P., 2015a ‒ Modelling landscape changes and detecting land cover types by the remote sensing data and ILWIS GIS, in Information Technologies, Problems and Solutions, 265-271.
  39. 39. Lemenkova P., 2015b ‒ Analysis of Landsat NDVI time series for detecting degradation of vegetation, in Geoecology and Sustainable Use of Mineral Resources, From Science to Practice, Belgorod, Russia, 11-13.
  40. 40. Lemenkova P., 2015c ‒ Technical approach of image segmentation in ENVI GIS to identify thematic clusters for visualization of urban transformations, Conference Proceedings Reality – the Sum of Information Technologies, December 14-15, 2015, Kursk, Russia, 100-104.
  41. 41. Lemenkova P. 2019a ‒ K-means clustering in R libraries {cluster} and {factoextra} for grouping oceanographic data, International Journal of Informatics and Applied Mathematics, 2, 1, 1-26.
  42. 42. Lemenkova P., 2019b ‒ Testing linear regressions by StatsModel Library of Python for oceanological data interpretation, Aquatic Sciences and Engineering, 34, 51–60.10.26650/ASE2019547010
  43. 43. Lemenkova P., 2019c ‒ AWK and GNU octave programming languages integrated with generic mapping tools for geomorphological analysis, GeoScience Engineering, 65, 4, 1-22.10.35180/gse-2019-0020
  44. 44. Lemenkova P., 2019d ‒ Statistical analysis of the Mariana Trench Geomorphology using R programming language, Geodesy and Cartography, 45, 2, 57-84.10.3846/gac.2019.3785
  45. 45. Lemenkova P., 2020a ‒ GMT based comparative geomorphological analysis of the Vityaz and Vanuatu Trenches, Fiji Basin, Geodetski List, 74, 1, 19-39.
  46. 46. Lemenkova P., 2020b ‒ Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT, Bulletin of Geography, Physical Geography Series, 18, 1, 41-60.10.2478/bgeo-2020-0004
  47. 47. Lemenkova P., 2020c ‒ R Libraries{dendextend} and {magrittr} and clustering package scipy.cluster of Python for modelling diagrams of dendrogram trees, Carpathian Journal of Electronic and Computer Engineering, 13, 1, 5-12.10.2478/cjece-2020-0002
  48. 48. McKinney W. 2010 ‒ Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June – 3 July 2010, 51-56.
  49. 49. Ministry of Environment and Forestry, 1994 ‒ A compendium of official instruments on forest and wildlife management in Cameroon, MINEF, Yaoundé, Cameroon, 185.
  50. 50. Ministry of the Environment and Protection of Nature, 2009 ‒ Cameroon fourth national report to the convention on biological diversity, MINEP, Yaoundé, Cameroon, 193.
  51. 51. Muam C. A., 1999 ‒ Co-management of forest in Cameroon, The compatibility of government policies with indigenous practices, Published PhD thesis, University of Twente, 197.
  52. 52. Ngo-Mbogba M., Yemefack M. and Nyeck B., 2015 ‒ Assessing soil quality under different land cover types within shifting agriculture in South Cameroon, Soil and Tillage Research, 150, 124-131.10.1016/j.still.2015.01.007
  53. 53. Nawarathne W. R. M. D. P., Dissanayake S. P. and Ginigaddara, G. A. S. 2020 ‒ Community Perception on Sustainable Utilization of Kaduwela Wetland for Agriculture, Sri Lanka, Sri Lankan Journal of Agriculture and Ecosystems, 2, 1, 78-88.
  54. 54. Nowakowski T., 2015 ‒ Arianespace successfully launches Europe’s Sentinel-2A Earth observation satellite, Spaceflight Insider.
  55. 55. Price R., Kamp-Glass M., Powell D., 1992 ‒ Tissue culture of wetland endangered plant species, HortSience: a publication of the American Society for Horticultural Science, 27, 11, 1166c-1166.10.21273/HORTSCI.27.11.1166c
  56. 56. Onana J. M., 2011 ‒ The vascular plants of Cameroon, A taxonomic check list with IUCN assessments, Flore du Cameroun 39, IRAD-National Herbarium of Cameroon, Yaounde, 195.
  57. 57. Onana J. M., 2015 ‒ The World Flora online 2020 project, will Cameroon come up to the expectation, Rodriguesia, 66, 961-972.10.1590/2175-7860201566403
  58. 58. Palmer J. F., 2004 ‒ Using spatial metrics to predict scenic perception in a changing landscape: Dennis, Massachusetts, Landscape and Urban Planning, 69, 201-218.10.1016/j.landurbplan.2003.08.010
  59. 59. Perry C. Jr. and Lautenschlager L. F., 1984 ‒ Functional equivalence of spectral vegetation indices, Remote Sensing of Environment, 14, 1-3, 169-182.10.1016/0034-4257(84)90013-0
  60. 60. Richardson A. J. and Wiegand C. L. 1977 ‒ Distinguishing vegetation from soil background information, Photogramnetric Engineering and Remote Sensing, 43, 12, 1541-1552.
  61. 61. Rouse J. W, Haas R. H., Scheel J. A. and Deering D. W., 1 974 ‒ M onitoring vegetation systems in the Great Plains with ERTS, Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1, 48-62.
  62. 62. Sainge N. M., 2016 ‒ Patterns of distribution and endemism of plants in the Cameroon Mountains: a case study of protected areas in Cameroon: Rumpi Hills Forest Reserve (RHFR) and the Kimbi Fungom National Park (KFNP), Tropical Plant Exploration Group (TroPEG) Cameroon, 171.
  63. 63. Shang R. and Zhu Z., 2019 ‒ Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach, Remote Sensing of Environment, 235, 111439.10.1016/j.rse.2019.111439
  64. 64. Seiny-Boukar L., Floret C., Moukouri K. H. and Pontanier R., 1992 ‒ Degradation of savanna soils and reduction of water available for the vegetation: the case of northern Cameroon vertisols, Canadian Journal of Soil Science, 72, 481-488.10.4141/cjss92-040
  65. 65. Silatsa F. B. T., Yemefack M., Tabi F. O., Heuvelink G. B. M. and Leenaars J. G. B., 2020 ‒ Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon, Geoderma, 367, 114260.10.1016/j.geoderma.2020.114260
  66. 66. Schenke H. W. and Lemenkova P., 2008 ‒ Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See, Hydrographische Nachrichten, 81, 16-21.
  67. 67. Schneider-Binder, 2020 ‒ Riparian vegetation along the Scroafa Stream and its tributaries (Southern Transylvania) under changing ecological conditions and human intervention, Transylvanian Review of Systematical and Ecological Research – The Wetlands Diversity, 22.2, 31-46.10.2478/trser-2020-0009
  68. 68. Suetova I. A., Ushakova L. A. and Lemenkova P., 2005a – Geoinformation mapping of the Barents and Pechora Seas, Geography and Natural Resources, 4, 138-142.
  69. 69. Suetova I. A., Ushakova L. A. and Lemenkova P., 2005b – Geoecological mapping of the Barents Sea using GIS, in International Cartographic Conference, La Coruna Spain, 5.
  70. 70. Takem-Mbi B. M., 2013 ‒ Assessing forest cover change in the Bafut-Ngemba Forest Reserve (BNFR), North West Region of Cameroon using remote sensing and GIS, International Journal of Agricultural Policy and Research, 1, 7, 180-187.
  71. 71. Testa S., Soudani K., Boschetti L. and Borgogno Mondino E., 2018 ‒ MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests, International Journal of Applied Earth Observation 64, 132-144.10.1016/j.jag.2017.08.006
  72. 72. Thiam A. K., 1997 ‒ Geographic Information Systems and Remote Sensing, methods for assessing and monitoring land degradation in the Sahel: the case of Southern Mauritania, Ph.D. Thesis, Clark University, Worcester Massachusetts, 490.
  73. 73. Traganos D., Poursanidis D., Aggarwal B., Chrysoulakis N. and Reinartz P., 2018 ‒ Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth and Sentinel-2, Remote Sensing, 10, 6, 859.10.3390/rs10060859
  74. 74. Tsozue D., Nghonda J. P. and Mekem D. L., 2015 ‒ Impact of land management system on crop yields and soil fertility in Cameroon, Solid Earth, 6, 1087-1101.10.5194/se-6-1087-2015
  75. 75. Xu H., 2006 ‒ Modification of normalised difference water index to enhance open water features in remotely sensed imagery, International Journal of Remote Sensing, 27, 3025-3033.10.1080/01431160600589179
  76. 76. Wanzie C. S., 2003 ‒ Wetland conservation and development in the Sahel of Cameroon, in Jamin J. Y., Seiny Boukar L. and Floret C. (eds), Savanes africaines: des espaces en mutation, des acteurs face à de nouveaux défis, Actes du colloque, mai 2002, Garoua, Cameroun, Prasac, N’Djamena, Tchad – Cirad, Montpellier, France, 6.
DOI: https://doi.org/10.2478/trser-2020-0015 | Journal eISSN: 2344-3219 | Journal ISSN: 1841-7051
Language: English
Page range: 17 - 34
Published on: Mar 18, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year
Related subjects:

© 2021 Polina Lemenkova, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.