Have a personal or library account? Click to login
A systematic review of integrated machine learning in posture recognition Cover

A systematic review of integrated machine learning in posture recognition

Open Access
|Feb 2022

References

  1. Liaqat S., Dashtipour K., Arshad K., Assaleh K. & Ramzan N. (2021). A hybrid posture detection framework: Integrating machine learning and deep neural networks, IEEE Sensors Journal, 9515-9522.10.1109/JSEN.2021.3055898
  2. Kendall F., McCreary E. & Provance, P. (2005). Muscles testing and function with posture and pain.,USA: Lippincott Williams and Wilkins, 560.
  3. Gilman S. (2014). “Stand Up Straight”: Notes Toward a History of Posture, J. Med. Humanit., 57–83.10.1007/s10912-013-9266-0
  4. Maciałczyk-Paprocka K., Stawińska-Witoszyńska B., Kotwicki T., Sowińska A., Krzyżaniak A., Walkowiak J. & Krzywińska-Wiewiorowska M. (2017). Prevalence of incorrect body posture in children and adolescents with overweight and obesity, European journal of pediatrics, 563–572.10.1007/s00431-017-2873-4
  5. Mahesh B. (2020). Machine Learning Algorithms-A Review, International Journal of Science and Research (IJSR), 381-386.10.21275/ART20203995
  6. Jordan M. I., & Mitchell T. M. (2015). Machine learning: Trends, perspectives, and prospects., Science, 255-260.10.1126/science.aaa8415
  7. Oppermann A. (2019). What is Deep Learning and How does it work? Retrieved from Towards Data Science, https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac, accessed on October 7, 2021.
  8. Goodfellow I., Bengio Y. & Courville A. (2016). Machine learning basics, Deep learning, 98-164.
  9. Saha S., Pal M., Konar A., & Janarthanan R. (2013). Neural network based gesture recognition for elderly health care using kinect sensor. International Conference on Swarm, Evolutionary, and Memetic Computing (pg. 376-386). Cham: Springer.10.1007/978-3-319-03756-1_34
  10. Song Y., Gu Y., Wang P., Liu Y., & Li A. (2013). A Kinect based gesture recognition algorithm using GMM and HMM, 6th International Conference on Biomedical Engineering and Informatics, Institute of Electrical and Electronics Engineers (IEEE), 750-754.10.1109/BMEI.2013.6747040
  11. Zhang Z., Liu Y., Li A. & Wang M. (2014). A novel method for user-defined human posture recognition using Kinect, 7th International Congress on image and signal processing, Institute of Electrical and Electronics Engineers (IEEE), 736-740.10.1109/CISP.2014.7003875
  12. Zemp R., Tanadini M., Plüss S., Schnüriger K., Singh N. B., Taylor W. R. & Lorenzetti S. (2016). Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors, BioMed Research international, 1-9.10.1155/2016/5978489
  13. Zerrouki N., Harrou F., Houacine A. & Sun Y. (2016). Fall detection using supervised machine learning algorithms: A comparative study, 8th International Conference on Modelling, Identification and Control (ICMIC), Institute of Electrical and Electronics Engineers (IEEE), 665-670.10.1109/ICMIC.2016.7804195
  14. Ma C., Li W., Gravina R. & Fortino G. (2017). Posture detection based on smart cushion for wheelchair users, Sensors, 719.10.3390/s17040719
  15. Kim Y. M., Son Y., Kim W., Jin B. & Yun M. H. (2018). Classification of children’s sitting postures using machine learning algorithms, Applied Sciences, 1280.10.3390/app8081280
  16. Roh J., Park H. J., Lee K. J., Hyeong J., Kim S. & Lee B. (2018). Sitting posture monitoring system based on a low-cost load cell using machine learning. Sensors, 208.10.3390/s18010208
  17. Rosero-Montalvo P. D., Peluffo-Ordóñez D. H., Batista V. F., Serrano J. & Rosero E. A. (2018). Intelligent system for identification of wheelchair user’s posture using machine learning techniques, IEEE Sensors Journal, 1936-1942.10.1109/JSEN.2018.2885323
  18. Mallick T., Das P. P. & Majumdar A. K. (2019). Posture and sequence recognition for Bharatanatyam dance performances using machine learning approach, ArXiv, abs/1909.11023.
  19. Koubâa A., Ammar A., Benjdira B., Al-Hadid A., Kawaf B., Al-Yahri S. A. & ... & Ras M. B. (2020). Activity monitoring of islamic prayer (salat) postures using deep learning, 6th Conference on Data Science and Machine Learning Applications (CDMA), Institute of Electrical and Electronics Engineers (IEEE), 106-111.10.1109/CDMA47397.2020.00024
  20. Agrawal Y., Shah Y. & Sharma A. (2020). Implementation of machine learning technique for identification of yoga poses, IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT), Institute of Electrical and Electronics Engineers (IEEE), 40-43.10.1109/CSNT48778.2020.9115758
  21. Han J., Song W., Gozho A., Sung Y., Ji S., Song L. & Zhang Q. (2020). Lora-based smart IoT application for smart city: an example of human posture detection. Wireless Communications and Mobile Computing., Art. no. 8822555.10.1155/2020/8822555
  22. Lee J., Joo H., Lee J. & Chee Y. (2020). Automatic classification of squat posture using inertial sensors: Deep learning approach. Sensors, 361.10.3390/s20020361
  23. Ahmad J., Sidén J. & Andersson H. (2021). A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods. Sensors, 6349.10.3390/s21196349
  24. Kumar S. S., Dashtipour K., Gogate M., Ahmad J., Assaleh K., Arshad K. & Ahmad W. (2021). Comparing the Performance of Different Classifiers for Posture Detection. EAI.
DOI: https://doi.org/10.2478/tperj-2021-0009 | Journal eISSN: 2199-6040 | Journal ISSN: 2065-0574
Language: English
Page range: 15 - 20
Published on: Feb 2, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Jurjiu Nicolae-Adrian, Avram Claudiu, Vutan Ana-Maria, Glazer Ciprian, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.