References
- 1. VanWye W.R., Weatherholt A.M., Mikesky A.E. (2017). Blood flow restriction training: Implementation into clinical practice, International Journal of Exercise Science, 10(5), 649.
- 2. Loenneke J.P, Fahs C.A., Rossow L.M., Sherk V.D., Thiebaud R.S., Abe T., Bemben D.A., Bemben M.G. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European Journal of Applied Physiology, 112(8), 2903-12.10.1007/s00421-011-2266-8
- 3. https://www.sportsmed.org/AOSSMIMIS/members/downloads/SMU/2017Spring.pdf (accessed on 23 November 2019).
- 4. Hamilton D.L, MacKenzie M.G., Baar K.R. (2009). Molecular mechanisms of skeletal muscle hypertrophy Using molecular biology to understand muscle growth, accessed on 23 November 2019 from https://www.researchgate.net/publication/235702201_Using_molecular_biology_to_understand_muscle_growth/stats.
- 5. Hylden C., Burns T., Stinner D., Owens J., (2015). Blood flow restriction rehabilitation for extremity weakness: a case series, Journal of Special Operations Medicine, 15(1), 50-6.10.55460/DQOF-LTY6
- 6. https://www.physiopedia.com/Blood_Flow_Restriction_Training:7-15 (accessed on 28 November 2019).
- 7. McEwen. JA., Owens J.G., Jeyasurya J. (2019). Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation?, Journal of Medical and Biological Engineering, 2, 39(2),173-7.10.1007/s40846-018-0397-7
- 8. Loenneke J.P, Fahs C.A, Rossow L.M., Sherk V.D., Thiebaud R.S., Abe T., Bemben D.A., Bemben M.G. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European Journal of Applied Physiology, 112, 2903–2912.
- 9. Karabulut M., (2011). The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps, Journal of Sports Science, 29, 951-958.10.1080/02640414.2011.572992
- 10. Loenneke J. P., Fahs, C. A., Rossow, L. M., Thiebaud, R. S., Mattocks, K. T., Abe, T., & Bemben, M. G. (2013). Blood flow restriction pressure recommendations: a tale of two cuffs, Frontiers in physiology, 4, 249.10.3389/fphys.2013.00249
- 11. Bond C.W., Hackney K.J., Brown S.L., Noonan B.C. (2019). Blood flow restriction resistance exercise as a rehabilitation modality following orthopaedic surgery: A review of venous thromboembolism risk, Journal of Orthopaedic & Sports Physical Therapy, 49(1),17-27.10.2519/jospt.2019.8375
- 12. De Freitas M.C., Gerosa-Neto J., Zanchi N.E., Lira F.S., Rossi FE. (2017). Role of metabolic stress for enhancing muscle adaptations: Practical applications. World journal of methodology, 7(2), 46–54.10.5662/wjm.v7.i2.46
- 13. Rahmani A., Mirzaei B., (2018). The acute effects of resistance exercise with blood flow and respiratory restriction on blood lactate and growth hormone in collegiate. International Journal of Wrestling Science 1, 1,30-35.
- 14. Chen H.L, Nosaka K., Chen T.C. (2012). Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. European Journal of Applied Physiology, 112, 555–56510.1007/s00421-011-1999-8
- 15. Thiebaud R.S., Yasuda T., Loenneke J.P., Abe T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage, Interventional Medicine & Applied Science, 5(2), 53–59.10.1556/imas.5.2013.2.1
- 16. Loenneke J.P., et. al. (2012). Effects of cuff width on arterial occlusion implications for blood flow restricted exercise. European Journal of Applied Physiology, 112, 2903-2912.10.1007/s00421-011-2266-8
- 17. Wernbom M., Järrebring R., Andreasson M.A., Augustsson J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load, Journal of Strength and Conditioning Research, 23(8), 2389-95.10.1519/JSC.0b013e3181bc1c2a
- 18. Takada S., et. al., (2012). Blood flow restriction exercise in sprinters and endurance runners, Medicine and Science in Sports and Exercise, 44(3), 413-9.10.1249/MSS.0b013e31822f39b3
- 19. Umbel J.D., Hoffman R.L., Dearth D.J., Chleboun G.S., Manini T.M., Clark B.C. (2009). Delayed-onset muscle soreness induced by low load blood flow-restricted exercise. European Journal of Applied Physiology l. 107, 687–695.10.1007/s00421-009-1175-6
- 20. Wernbom M., Paulsen G., Nilsen T.S., Hisdal J., Raastad T. (2012). Contractile function and sarcolemmal permeability after acute low load resistance exercise with blood flow restriction, European Journal of Applied Physiology, 112, 2051–2063.10.1007/s00421-011-2172-0
- 21. Loenneke J.P., Wilson J.M., Marín P.J., Zourdos M.C., Bemben M.G. (2011). Low intensity blood flow restriction training: A meta-analysis, European Journal of Applied Physiology, 112, 1849-59.10.1007/s00421-011-2167-x
- 22. Neto G.R., Sousa M.S., Costa P.B., Salles B.F., Novaes G.S., Novaes J.S. (2015). Hypotensive effects of resistance exercises with Blood Flow Restriction, Journal of strength and conditioning research/National Strength & Conditioning Association, 29(4),1064-70.10.1519/JSC.0000000000000734
- 23. Renzi C.P., Tanaka H., Sugawara J. (2009). Effects of leg blood flow restriction during walking on cardiovascular function, Medicine and science in sports and exercise, 42(4), 726-32.10.1249/MSS.0b013e3181bdb454
- 24. Suga T., Okita K., Takada S., Omokawa M., Kadoguchi T., Yokota T., Tsutsui H. (2012). Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction, European Journal of Applied Physiology, 112(11), 3915–3920.10.1007/s00421-012-2377-x
- 25. Scott B.R., Loenneke J.P., Slattery K.M., Dascombe B.J. (2014). Exercise with Blood Flow Restriction: An updated evidence-based approach for enhanced muscular development, Sports Medicine, 45(3):313-25.10.1007/s40279-014-0288-1
