Have a personal or library account? Click to login
Current threats on gene doping - a systematic review Cover
Open Access
|Mar 2019

References

  1. 1. Barton-Davis E.R., Shoturma D.I., Musaro A., Rosenthal N., Sweeney H.L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function, Proc. Natl. Acad. Sci. USA, 95:15603–15607,10.1073/pnas.95.26.15603
  2. 2. McPherron A.C., Lawler A.M., Lee S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member, Nature, 387, 83–90.10.1038/387083a0
  3. 3. https://www.scientificamerican.com/article/olympics-genedoping-expert/, accessed on 20th of September, 2018.
  4. 4. https://www.wada_ama.org/sites/default/files/prohibited_l ist_2018_en.pdf, accessed on 20th of September, 2018.
  5. 5. https://annualmeeting.asgct.org/about_gene_therapy/diseases.php, accessed on 24th of September, 2018.
  6. 6. MacLaren, R.E. et al. (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial, The Lancet, 383(9923), 1129-1137.10.1016/S0140-6736(13)62117-0
  7. 7. Petrs-Silva H., Linden R. (2014). Advances in gene therapy technologies to treat retinitis pigmentosa, Clinical Opthalmology, 8, 127-136.10.2147/OPTH.S38041
  8. 8. Nathwani A.C. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B, The New England Journal of Medicine, 365(25), 2357-2365.
  9. 9. Nienhuis A.W. (2013). Development of gene therapy for blood disorders: an update, Blood 122(9), 1556-1564.10.1182/blood-2013-04-453209
  10. 10. Wells D.J. (2008). Gene doping: the hype and the reality, Br J Pharmacol. Jun, 154(3), 623-631.10.1038/bjp.2008.144
  11. 11. http://am.e_nformation.ro/login?url=http://www.webofkno wledge.com, accessed on 25th of September, 2018.
  12. 12. https://www.wada-ama.org/en/gene-doping, accessed on 12th of September, 2018.
  13. 13. https://www.wada_ama.org/sites/default/files/prohibited_l ist_2018_summary_of_modifications_en.pdf, accessed on 12th of September, 2018.
  14. 14. Lunde G.I., Ekmark M., Rana Z.A., Buonanno A., Gundersen K. (2007). PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer, J Physiol., 582(3),1277–1287.10.1113/jphysiol.2007.133025
  15. 15. Wang Y.X., Zhang C.L, Yu R.T., Cho H.K., Nelson M.C., Bayuga-Ocampo C.R., Ham J., Kang H., Evans R.M. (2004). Regulation of muscle fiber type and running endurance by PPARdelta, PLoS Biol., Oct., 2(10): e294.10.1371/journal.pbio.0020294
  16. 16. Lee C.H., Olson P., Hevener A., Mehl I., Chong L.W., Olefsky J.M., Gonzalez F.J., Ham J., Kang H., Peters J.M., Evans R.M.(2006). PPARδ regulates glucose metabolism and insulin sensitivity, Proc. Natl. Acad. Sci., 103, 3444–3449.10.1073/pnas.0511253103
  17. 17. Brzeziańska E., Domańska D., & Jegier A. (2014). Gene doping in sport–perspectives and risks, Biology of sport, 31(4), 251-259.10.5604/20831862.1120931
  18. 18. Shyu K.G., Chang H., Wang B.W., Kuan P. (2003). Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia, Am. J. Med., 1, 85–92.10.1016/S0002-9343(02)01392-X
  19. 19. Lippi G., Guidi G.C. (2004). Gene manipulation and improvement of athletic performances: new strategies in blood doping, Br. J. Sports Med., 38: 641.10.1136/bjsm.2004.013623
  20. 20. Winder W.W., Hardie D.G. (1999). AMP–activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am. J. Physiol., 277: E1–E10.10.1152/ajpendo.1999.277.1.E1
  21. 21. Rantzau C., Christopher M., Alford F.P. (2008). Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism, J. Appl. Physiol.,104, 363–370.10.1152/japplphysiol.00500.2007
  22. 22. Narkar V.A., Downes M., Yu R.T., Embler E., Wang Y.X., Banayo E., Mihaylova M.M., Nelson M.C., Zou Y., Juguilon H., Kang H., Shaw R.J., Evans R.M. (2008). AMPK and PPARd agonists are exercise mimetics, Cell, 134, 405–415.10.1016/j.cell.2008.06.051
  23. 23. Lee S., Barton E.R., Sweeney H.L., Farrar R.P. (2004). Viral expression of insulin–like growth factor–I enhances muscle hypertrophy in resistance–trained rats, J. Appl. Physiol., 96, 1097–1104.10.1152/japplphysiol.00479.2003
  24. 24. Doessing S., Kjaer M. (2005). Growth hormone and connective tissue in exercise, Scand. J. Med. Sci. Sports,15, 202–210.10.1111/j.1600-0838.2005.00455.x
  25. 25. Whittemore L.A. et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength, Biochem. Biophys. Res. Commun., 24, 965–971.10.1016/S0006-291X(02)02953-4
  26. 26. Hakimi P., Yang J., Casadesus G., Massillon D., Tolentino-Silva F., Nye C.K., Cabrera M.E., Hagen D.R., Utter C.B., Baghdy Y., Johnson D.H., Wilson D.L., Kirwan J.P., Kalhan S.C., Hanson R.W. (2007). Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse, J. Biol. Chem., 9, 32844–32855.10.1074/jbc.M706127200
  27. 27. Beale E., Forest C., Harvey B.J. (2007). PCK1 and PCK2 as candidate diabetes and obesity genes, Cell Biochemistry and Biophysics, 48(2-3), 89-95.10.1007/s12013-007-0025-6
  28. 28. Wilson S.P., Yeomans D.C., Bender M.A., Lu Y., Goins W.F., Glorioso J.C. (1999). Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus, Proc. Natl. Acad. Sci. USA, 96, 3211–3216.10.1073/pnas.96.6.3211
  29. 29. Machelska H. et al. (2009). Peripheral non-viral MIDGE vector-driven delivery of beta-endorphin in inflammatory pain, Mol, Pain. 14(5), 72.10.1186/1744-8069-5-72
  30. 30. Hao S., Wolfe D., Glorioso J.C., Mata M., Fink D.J. (2009). Effects of transgene-mediated endomorphin-2 in inflammatory pain, Eur. J. Pain, 13, 380–386.10.1016/j.ejpain.2008.05.008
  31. 31. Raper S.E., Chirmule N., Lee F.S., Wivel N.A., Bagg A., Gao G.P., Wilson J.M., Batshaw M.L. (2003). Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer, Mol. Genet. Metab., 80(1-2), 148-58.10.1016/j.ymgme.2003.08.016
  32. 32. Perry J.K., Starling Emerald B., Mertani H.C., Lobie P.E. (2006). The oncogenic potential of growth hormone, Growth Hormone & IGF Research, 16(5–6), 277-289;10.1016/j.ghir.2006.09.006
  33. 33. Anderson L., Tamayose J.M., Garcia J.M. (2018). Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects, Molecular and Cellular Endocrinology, 464 (C), 65-74.10.1016/j.mce.2017.06.010
  34. 34. Bergestrom J. (1993). New aspects of erythropoietin treatment, J. Int. Med., 233,1–18.10.1111/j.1365-2796.1993.tb00998.x
  35. 35. Gao G., Lebherz C., Weiner D. J., Grant R., Calcedo et al. (2004). Erythropoietin gene therapy leads to autoimmune anemia in macaques, Blood, 103(9), 3300-3302.10.1182/blood-2003-11-3852
  36. 36. Chenuaud P., Larcher T., Rabinowitz J. E., Provost N., Cherel Y., Casadevall N., Samulski R.J., Moullier P. (2004). Autoimmune anemia in macaques following erythropoietin gene therapy, Blood, 103(9), 3303-3304.10.1182/blood-2003-11-3845
  37. 37. Horgan J. (2016). Could Olympians Be Tweaking Their Genes?, https://blogs.scientificamerican.com/cross-check/couldolympians-be-tweaking-their-genes/ accessed on 17th of September, 2018.
  38. 38. Thevis M., Geyer H., Thomas A., Schanzer W. (2011). Trafficking of drug candidates relevant for sports drug testing: Detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet, Drug Testing and Analysis, 3 (5), 331-336.10.1002/dta.283
  39. 39. Fischetto G., Bermon S. (2013). From Gene Engineering to Gene Modulation and Manipulation: Can We Prevent or Detect Gene Doping in Sports?, Sports Medicine, 43(10), 965-977.10.1007/s40279-013-0075-4
  40. 40. Friedmann T. (2013). Genetic and cellular approaches to doping and doping detection, WADA Symposium on Gene and Cell Doping, Beijing, retrieved from https://www.wadaama.org/sites/default/files/resources, on12th of September, 2018.
  41. 41. Baoutina A., Bhat S., Zheng M., Partis L., Dobeson M., Alexander I.E., Emslie K.R. (2016). Synthetic certified DNA reference material for analysis of human erythropoietin transgene and transcript in gene doping and gene therapy, Gene therapy 23(10), 708-717.10.1038/gt.2016.47
  42. 42. Mullin E. (2018). 2017 Was the Year of Gene-Therapy Breakthroughs, accessed on 27th of October, 2018 https://www.technologyreview.com/s/609643/2017-wasthe-year-of-gene-therapy-breakthroughs/.
  43. 43. Hall S. (2018). Olympic gene doping: How WADA is managing new performance-enhancing technologies, accessed from https://geneticliteracyproject.org/2018/02/13/ on 10th of October, 2018.
  44. 44. Rankinen T., Perusse L., Rauramaa R., Rivera M.A., Wolfarth B., Bouchard C. (2004). The human gene map for performance and health-related fitness phenotypes: the 2003 update, Med. Sci. Sports Exerc., 36, 1451 – 1469.10.1249/01.MSS.0000139902.42385.5F
  45. 45. Wenner M. (2008). How to Be Popular duringthe Olympics: Be H. Lee Sweeney, Gne Dopin Expert, Scientific America, August 15, https://www.scientificamerican.com/article/olympicsgene-doping-expert/ on 12th of September, 2018.
DOI: https://doi.org/10.2478/tperj-2018-0013 | Journal eISSN: 2199-6040 | Journal ISSN: 2065-0574
Language: English
Page range: 28 - 35
Published on: Mar 28, 2019
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Mihaela Oravițan, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.