Have a personal or library account? Click to login
Compact Implicit High Resolution Numerical Method for Solving Transport Problems with Sorption Isotherms Cover

Compact Implicit High Resolution Numerical Method for Solving Transport Problems with Sorption Isotherms

Open Access
|Jan 2026

References

  1. BRUSSEAU,M.L.: The effect of nonlinear sorption on transformation of contaminants during transport in porous media, Journal of Contaminant Hydrology 17 (1995), 277–291.
  2. BÜRGER, R.—MULET, P.—RUBIO, L.—SEPÚLVEDA, M.: Linearly implicit-explicit schemes for the equilibrium dispersive model of chromatography, Appl. Math. Comput. 317 (2018), 172–186.
  3. DONAT, R.—GUERRERO, F.—MULET, P.: Implicit-explicit WENO scheme for the equilibrium dispersive model of chromatography, Appl. Numer. Math. 123 (2018), 22–42.
  4. DONAT, R.—MART´I, M. C.—MULET, P.: WENO scheme on characteristics for the equilibrium dispersive model of chromatography with generalized Langmuir isotherms, Appl. Numer. Math. 201 (2024), 247–264.
  5. DURAISAMY, K.—BAEDER, J. D.: Implicit scheme for hyperbolic conservation laws using nonoscillatory reconstruction in space and time, SIAM J.Sci.Comput. 29 (2007). 2607–2620
  6. FROLKOVIČ, P.—LAMPE, M.—WITTUM, G.: Numerical simulation of contaminant transport in groundwater using software tools of r3t,Comput. Vis.Sci. 18 (2016), 17–29.
  7. FROLKOVIČ, P.—ŽERAVÝ, M.: High resolution compact implicit numerical scheme for conservation laws, Appl. Math. Comput. 442 (2023), Paper no. 127720. 17 pp.
  8. FROLKOVIČ, P.—KAČUR, J.: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D, Comput. Geosci. 10 (2006), 279–290.
  9. GU, T.: Mathematical Modeling and Scale-Up of Liquid Chromatography: With Application Examples. Springer-Verlag, Berlin, 2015.
  10. JAVEED, S.—QAMAR, S.—SEIDEL-MORGENSTERN, A.—WARNECKE, G.: Efficient and accurate numerical simulation of nonlinear chromatographic processes,Computers & Chemical Engineering 35 (2011), 2294–2305.
  11. KAČUR, J.—MALENGIER, B.—REMEŠÍKOVÁ, M.: Solution of contaminant transport with equilibrium and non-equilibrium adsorption, Comput. Methods Appl. Mech. Engrg. 194 (2005), 479–489.
  12. KACZMARSKI, K.—SZUKIEWICZ, M. K.: Analytical and numerical solutions of linear and nonlinear chromatography column models Acta Chromatographica 37 (2025), 26–37.
  13. LEVEQUE, R. J.: Finite Volume Methods for Hyperbolic Problems. 2nd edition, Cambridge UP, Cambridge, 2004.
  14. QAMAR, S.—NAWAZ ABBASI, J.—JAVEED, S.—SEIDEL-MORGENSTERN, A.: Analytical solutions and moment analysis of general rate model for linear liquid chromatography, Chemical Engineering Science 107 (2014), 192–205.
  15. QIU, J.—SHU, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations,SIAMJ. Sci.Comp. 24 (2003), 2185–2198.
  16. SCHMIDT-TRAUB, H.—SCHULTE, M.—SEIDEL-MORGENSTERN, A.: Preparative Chromatography. John Wiley & Sons, Inc Weinheim, 2020. DOI:10.1002/9783527816347
  17. SHU, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws.In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.
  18. VAN ROSSUM, G.—DRAKE, FL. JR.: Python Tutorial. Technical Report, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands, 1995.
  19. ZAFAR, S.—PERVEEN, S.—QAMAR, S.: Discontinuous Galerkin scheme for solving non-isothermal and non-equilibrium model of liquid chromatography, Journal of Liquid Chromatography & Related Technologies 44 (2021), 52–69.
  20. ZAKOVA, D.: Second order accurate compact implicit numerical scheme for solving linear advection equation in two dimensions.In: Advances in Architectural, Civil and Environmental Engineering 33rd Annual PhD Student Conference on Applied Mathematics, Building Technology, Geodesy and Cartography, Landscaping, Theory and Environmental Technology of Buildings, Theory and Structures of Buildings, Theory and Structures of Civil Engineering Works, Water Resources Engineering: October 25th 2023, Bratislava, Slovakia (A. Bisták, ed.), pp. 40–47. SPEKTRUM STU, Bratislava, 2023.
  21. ZHAO, H.: A fast sweeping method for eikonal equations, Math. Comp. 74 (2005), 603–627.
  22. ŽÁKOVÁ, D.—FROLKOVIČ, P.: Numerical solution of two dimensional scalar conservation laws using compact implicit numerical schemes, arXiv preprint arXiv:2407.05275, August 2024.
DOI: https://doi.org/10.2478/tmmp-2025-0030 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 153 - 178
Submitted on: Aug 8, 2025
|
Accepted on: Apr 23, 2025
|
Published on: Jan 20, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2026 Dagmar Žáková, Peter Frolkovič, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.