Have a personal or library account? Click to login
Solving Sparse Mrhs Systems With Genetic Algorithms Cover
Open Access
|Jan 2026

References

  1. ADAMČEK, P.—LODERER, M.—ZAJAC, P.: A comparison of local reduction and SAT-solver based algebraic cryptanalysis of JH and Keccak, Tatra Mt. Math. Publ. 53 (2012), 1–20.
  2. ANGEL, E.—CAMPIGOTTO, R.—LAFOREST, C.: Algorithms for the vertex cover problem on large graphs, IBISC–Universited’Evry-Val d’Essonne Research report no. 1 (2010).
  3. BHASIN, H.—KUMAR, N.—MUNJAL, D.: Hybrid genetic algorithm for maximum clique problem, International Journal of Application of Innovation in Engineering & Management (2013).
  4. DE JONG, K. A.—SPEARS, W. M. et al.: Using genetic algorithms to solve NP-complete problems. In: ICGA (1989), pp. 124–132.
  5. DROGOUL, A.—DUBREUIL, C.: A distributed approach to n-puzzle solving.In: Proceedings of the Distributed Artificial Intelligence Workshop (1993).
  6. FAUSKANGER, S.—SEMAEV, I.: Separable statistics and multidimensional linear cryptanalysis, IACR Transactions on Symmetric Cryptology (2018), 79–110.
  7. GRASSI, L.—KALES, D.—RECHBERGER, C.—SCHOFNEGGER, M.: Survey of key-recovery attacks on LowMC in a single plaintext/ciphertext scenario (2020).
  8. HOLLAND, J. H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975. Second edition, 1992.
  9. KUPKOVIČ, J.: MRHS Solver Based on evolutionary algorithms, MSc. Thesis, Slovak University of Technology in Bratislava 2023. (In Slovak)
  10. LACKO-BARTOŠOVÁ, L.: Algebraic cryptanalysis of present based on the method of syllogisms, Tatra Mt. Math. Publ. 53 (2012), 201–212.
  11. LARRANAGA, P.—KUIJPERS, C. M. H.— MURGA, R. H.—INZA, I.—DIZDAREVIC, S.: Genetic algorithms for the travelling salesman problem: A review of representations and operators, Artificial intelligence review 13 (1999), 129–170.
  12. MATHEIS, K.—STEINWANDT, R.—SUÁREZ CORONA, A.: Algebraic properties of the block cipher DESL, Symmetry 11 (2019), Paper 1411. https://doi.org/10.3390/sym11111411
  13. RADDUM, H.—SEMAEV, I.: Solving multiple right hand sides linear equations, Des. Codes and Cryptography 49 (2008), no. 1–3 147–160.
  14. RADDUM, H.—ZAJAC, P.: MRHS solver based on linear algebra and exhaustive search,J. Math. Cryptol. 12 (2018), 143–157.
  15. RADDUM, H.—SEMAEV, I.: New technique for solving sparse equation systems. Cryptology ePrint Archive, Paper 2006/475, 2006, https://eprint.iacr.org/2006/475.
  16. SEMAEV, I.: New results in the linear cryptanalysis of DES Cryptology ePrint Archive (2014).
  17. SMIČÍK, M.—ZAJAC, P.: Algebraic cryptanalysis of Ascon using MRHS equations,Tatra Mt.Math. Publ. 87 (2024), 1–24.
  18. SMIČÍK, M.—ZAJAC, P.: Using MRHS solver for decoding problem — extended abstract. Central European Conference on Cryptology 2024, Warsaw, 2024.
  19. TITO-CORRIOSO, O.—BORGES-QUINTANA, M.—BORGES-TRENARD, M. A.: Improving search of solutions of MRHS systems using the genetic algorithm, Revista Cubana de Ciencias Informáticas 17 (2023).
  20. WANG, R. L.: A genetic algorithm for subset sum problem, Neurocomputing 57 (2004), 463–468.
  21. ZAJAC, P.: Solving trivium-based Boolean equations using the method of syllogisms, Fund. Inform. 114 (2012), 359–373.
  22. ZAJAC, P.: On solving sparse MRHS equations with bit-flipping, Publ. Math. Debrecen 100 (2022), suppl. 8, 683–700.
  23. ZAJAC, P.: Algebraic cryptanalysis with MRHS equations, Cryptography 7 (2023), Paper 19, https://doi.org/10.3390/cryptography7020019
  24. ZAJAC, P.—ČAGALA, R.: Local reduction and the algebraic cryptanalysis of the block cipher GOST, Period. Math. Hungar. 65 (2012), 239–255.
  25. ZAJAC, P.—ŠPAČEK, P.: A new type of signature scheme derived from a MRHS representation of a symmetric cipher, Infocommunications Journal 11 (2019), 23–30.
DOI: https://doi.org/10.2478/tmmp-2025-0029 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 51 - 68
Submitted on: Aug 8, 2025
|
Accepted on: Sep 17, 2025
|
Published on: Jan 20, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2026 Eugen Antal, Pavol Zajac, Sabina Pekareková, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.