Have a personal or library account? Click to login
Fourth-Order Nonlinear Neutral Difference Equations: Oscillation via New Canonical Transforms Cover

Fourth-Order Nonlinear Neutral Difference Equations: Oscillation via New Canonical Transforms

Open Access
|Dec 2025

References

  1. AGARWAL, R. P.—BOHNER, M.—GRACE, S. R.—O’REGAN, D.: Discrete Oscillation Theory. Hindawi, New York, 2005.
  2. AGARWAL, R. P.—GRACE, S. R.—MANOJLOVIC, J. V.: On the oscillatory properties of certain fourth order nonlinear difference equations, J. Math. Anal. Appl. 322 (2006), 930–956.
  3. AGARWAL, R. P.—GRACE, S. R.—O’REGAN, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer, Dordrecht, 2000.
  4. DOŠLÁ, Z.—KREJČOVÁ, J.: Oscillation of a class of the fourth-order nonlinear difference equations, Adv. Difference Equ. 2012 (2012), Art. ID 99, 14 pages.
  5. DOŠLÁ, Z.—KREJČOVÁ, J.: Asymptotic and oscillatory properties of the fourth-order nonlinear difference equations, Appl. Math. Comput. 249 (2014), 164–173.
  6. GANESAN, P.—PALANI, G.—GRAEF, J. R.—THANDAPANI, E.: Oscillation of fourth-order nonlinear semi-canonical neutral difference equations via canonical transformations, Abst. Appl. Anal. 2024 (2024), Article ID 6682607, 9 p.
  7. GRACE, S. R. —GRAEF, J. R.: Oscillatory behavior of higher order nonlinear difference equations, Math. Model. Anal. 25 (2020), 522–530.
  8. GRACE, S. R.—ZAFER, A.: Oscillation of fourth-order nonlinear neutral delay dynamic equations, Hacett. J. Math. Stat. 44 (2015), 331–339.
  9. GYÖRI, I.—LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
  10. PRABAHARAN, N.—GRAEF, J. R.—THANDAPANI, E.: Fourth order strongly noncanonical neutral difference equations: new oscillation results, to appear.
  11. PURUSHOTHAMAN, G.—SURESH, K.—GRAEF, J. R.—THANDAPANI, E.: Oscillation criteria for fourth order delay differential equations using canonical transformations, J. Math. 65 (2023), 229–245.
  12. SCHMEIDEL, E.—SCHMEIDEL, J.: Asymptotic behavior of solutions of a class of fourth order nonlinear neutral difference equations with quasi-differences, Tatra Mt. Math. Publ. 38 (2007), 243–254.
  13. SELVARANGAM, S.—RUPADEVI, S. A.—THANDAPANI, E.—PINALAS, S.: Oscillation criteria for even order neutral difference equations, Opuscula Math. 39 (2019), 91–108.
  14. TANG, X. H.—LIU, Y.: Oscillation for nonlinear delay difference equations, Tamkang J. Math. 32 (2001), 275–280.
  15. THANDAPANI, E.—AROCKIASAMY, I. M.: Oscillatory and asymptotic behavior of fourth order nonlinear neutral delay difference equations, Indian J. Pure Appl. Math. 32 (2001), 387–399.
  16. THANDAPANI, E.—AROCKIASAMY, I. M.: Oscillation and nonoscillation theorems for fourth order neutral difference equations, Commun. Pure Appl. Anal. 8 (2004), 279–291.
  17. TRIPATHY, A. K.: Oscillation of fourth order nonlinear neutral difference equations-I, Math. Slovaca 58 (2008), 221–240.
  18. TRIPATHY, A. K.: Oscillation of fourth order nonlinear neutral difference equations-II, Math. Slovaca 58 (2008), 581–604.
  19. TRIPATHY, A. K.: On oscillatory nonlinear fourth-order difference equations with delays, Math. Bohemica 143 (2018), 25–40.
  20. VIMALA, R.—KODEESWARAN, R.—CEP, R.—KRISHNASAMY, M. J. I.— AWASTHI, M.—SANTHAKUMAR, G.: Oscillation of nonlinear neutral delay difference equations of fourth order, Mathematics 11 (2023), no. 1370, 13 pages.
DOI: https://doi.org/10.2478/tmmp-2025-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 107 - 123
Submitted on: Oct 3, 2024
Accepted on: Jul 4, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Priyanga Ganesan, Gomathi Palani, JohnR. Graef, Ethiraju Thandapani, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.