Have a personal or library account? Click to login
Geometric Solutions of a Quadratic Polynomial Differential System Having the First Integral Cover

Geometric Solutions of a Quadratic Polynomial Differential System Having the First Integral

Open Access
|Dec 2025

References

  1. ARTÉS, J. C.—LLIBRE, J.—SCHLOMIUK, D.—VULPE, N.: Geometric Configurations of Singularities of Planar Polynomial Differential Systems. Springer-Verlag, Berlin, 2021.
  2. BAUTIN, N. N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sbornik, 30 (1952), 181–196, Amer. Math. Soc. Transl, 100 (1954), 1–19.
  3. BELFAR, A.— BENTERKI, R.: Phase portraits of quadratic polynomial differential systems having as solution some classical planar algebraic curves of degree six, Tatra Mt. Math. Publ. 15 (2022), 129–144.
  4. BENTERKI, R.—LLIBRE, J.: Phase portraits of quadratic polynomial differential systems having as solution some classical planar algebraic curves of degree 4, Electronic J. Differential Equ., 15) (2019), 1–25.
  5. DULAC, H.: Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér. (2), 32 (1908), 230–252.
  6. DUMORTIER, F.—LLIBRE, J.—ARTÉS, J. C.: Qualitative Theory of Planar Differential Systems. Universitext, Spring-Verlag, Berlin, 2006.
  7. KAPTEYN, W.: On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederlands, 19 (1911), 1446–1457.
  8. KAPTEYN, W.: New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 20 (1912), 1354–1365.
  9. LUNKEVICH, V. A.—SIBIRSKII, K. S.: Integrals of a general quadratic differential system in cases of a center, Differential Equations, 18 (1982), 563–568.
  10. MARKUS, L.: Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc. 76 (1954), 127–148.
  11. NEUMANN, D. A.: Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975), 73–81.
  12. PEIXOTO, M. M.: Dynamical systems, in: Proceedings of a Symposium held at the University of Bahia, Salvdor, Brasil, July 26–August14 1971, Acad. Press, New York, 1973. pp. 389–420.
  13. REYN, J. W.: Phase Portraits of Planar Quadratic Systems. In:Mathematics and its Applications Vol. 583, Springer-New York, 2007.
  14. SCHLOMIUK. D.: Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc. 338 (1993), 99–841.
  15. WEI YIN.—YANQIAN, YE.: On the conditions of a center and general integrals of quadratic differential systems, Acta Math. Sin. (Engl. Ser.) 17 (2001), 229–236.
  16. YE, Y. Q ET AL.: Theory of Limit Cycles. 2nd ed. (Translated from the Chinese by Chi Y. Lo.). In: Translations of Mathematical Monographs, Vol. 66, American Math. Soc., Providence, RI, 1986.
DOI: https://doi.org/10.2478/tmmp-2025-0024 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 91 - 106
Submitted on: Feb 15, 2024
Accepted on: Feb 12, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Ahlam Belfar, Rebiha Benterki, Halla Sellami, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.