Have a personal or library account? Click to login
Existence, Uniqueness and Successive Approximations for Caputo Tempered Fractional Differential Equations Cover

Existence, Uniqueness and Successive Approximations for Caputo Tempered Fractional Differential Equations

Open Access
|Dec 2025

References

  1. ABBAS, S.—ARARA, A.—BENCHOHRA, M.: Global convergence of successive approximations for abstract semilinear differential equations, PanAmer. Math. J. 29 (2019), no. 1, 17–31.
  2. ABBAS, S.—BENCHOHRA, M.—N’GUÉRÉKATA, G. M.: Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
  3. ABBAS, S.—BENCHOHRA, M.—LAZREG, J. E.—NIETO, J. J.—ZHOU, Y.: Fractional Differential Equations and Inclusions: Classical and Advanced Topics, World Scientific, Hackensack, NJ, 2023.
  4. ABBAS, S.—BENCHOHRA, M.—GRAEF, J. R.—HENDERSON, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
  5. ABBAS, S.—BENCHOHRA, M.—HAMIDI, N.: Successive approximations for the Darboux problem for implicit partial differential equations, PanAmer. Math. J. 28 (2018), no. 3, 1–10.
  6. ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. 47 (2024), no. 13, 10928–10939.
  7. ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), 313–333.
  8. ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM 115 (2021), no. 3, 155 pp.
  9. ALSULAMI, H.—GÜLYAZ, S.—KARAPINAR, E.—ERHAN, I.: An Ulam stability result on quasi-b-metric-like spaces, Open Math. 14 (2016), no. 1, 1087–1103.
  10. ALMEIDA, R.—MORGADO, M. L.: Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math. 361 (2019), 1–12.
  11. BALEANU, D.—GÜVENÇ, Z. B.—MACHADO, J. A. T.: New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
  12. BENCHOHRA, M.—BOUAZZAOUI, F.—KARAPINAR, E.—SALIM, A.: Controllability of second order functional random differential equations with delay, Mathematics 10 (2022), 16 pp.
  13. BENCHOHRA, M.—KARAPINAR, E.—LAZREG, J. E.—SALIM, A.: Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.
  14. BENCHOHRA, M.—KARAPINAR, E.—LAZREG, J. E.—SALIM, A.: Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives. Springer, Cham, 2023.
  15. BENKHETTOU, N.—AISSANI, K.—SALIM, A.—BENCHOHRA, M.—TUNC, C.: Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), 79–94.
  16. BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: Existence and oscillatory results for Caputo tempered fractional differential equations and inclusions, Mathematica Appl. 52 (2024), no. 1, 149–171.
  17. BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: On implicit neutral Caputo tempered fractional differential equations with delay, Appl. Math. E-Notes 24 (2024), 424–442.
  18. BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: On implicit neutral tempered ψ-Caputo fractional differential equations with delay via densifiability techniques, Adv. Theory Nonl. Anal. Appl. 7 (2023), no. 5, 44–65.
  19. CHEN, H. Y.: Successive approximations for solutions of functional integral equations, J. Math. Anal. Appl. 80 (1981), 19–30.
  20. DEBLASI, F. S.—MYJAK, J.: Some generic properties of functional differential equations in Banach space, J. Math. Anal. Appl. 67 (1979), 437–451.
  21. FAINA, L.: The generic property of global convergence of successive approximations for functional differential equations with infinite delay, Commun. Appl. Anal. 3 (1999), 219–234.
  22. GRANAS, A.—DUGUNDJI, J.: Fixed Point Theory, Springer-Verlag, New York, 2003.
  23. KARAPINAR, E.—SEVINIK-ADIGÜZEL, R.—AKSOY,Ü.—ERHAN, ˙I. M.: Anew approach to the existence and uniqueness of solutions for a class of nonlinear q-fractional boundary value problems, Appl. Comput. Math. 42 (2025), no. 2, 235–249.
  24. KILBAS, A. A.—SRIVASTAVA, H. M.—TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam, 2006.
  25. KRIM, S.—SALIM, A.—BENCHOHRA, M.: Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay, Filomat 37 (2023), no. 22, 7491–7503.
  26. KRIM, S.—SALIM, A.—BENCHOHRA, M.: On implicit Caputo tempered fractional boundary value problems with delay, Lett. Nonlinear Anal. Appl. 1 (2023), no. 1, 12–29.
  27. LI, C.—DENG, W.—ZHAO, L.: Well-posedness and numerical algorithm for the tempered fractional differential equations, Discr. Contin. Dyn. Syst. Ser. B 24 (2019), 1989–2015.
  28. OBEIDAT, N. A.—BENTIL, D. E.: New theories and applications of tempered fractional differential equations, Nonlinear Dyn. 105 (2021), 1689–1702.
  29. SABZIKAR, F.—MEERSCHAERT, M. M.—CHEN, J.: Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14–28.
  30. SAMKO, S. G.—KILBAS, A. A.—MARICHEV, O., I.: Fractional Integrals and Derivatives. Theory and Applications, (Engl. Trans. from the Russian) Gordon and Breach, Amsterdam, 1987.
  31. SHIN, J. S.: Global convergence of successive approximations of solutions for functional differential equations with infinite delay, Tohoku Math. J. 39 (1986), 557–574.
  32. SHIRI, B.—WU, G.—BALEANU, D.: Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math. 156 (2020), 385–395.
  33. SIBACHIR, F.—ABBAS, S.—BENBACHIR, M.—BENCHOHRA M.—N’GUÉRÉKATA, G. M.: Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations, Cubo 23 (2021), no. 1, 145–159.
  34. TARASOV, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Higher Education Press, Springer, Heidelberg; Beijing, 2010.
  35. ZHOU, Y.: Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
DOI: https://doi.org/10.2478/tmmp-2025-0022 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 35 - 50
Submitted on: Jun 15, 2023
Accepted on: Aug 23, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Nawal Bettayeb, Abdelkrim Salim, Jamal Eddine Lazreg, Mouffak Benchohra, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.