References
- ABBAS, S.—ARARA, A.—BENCHOHRA, M.: Global convergence of successive approximations for abstract semilinear differential equations, PanAmer. Math. J. 29 (2019), no. 1, 17–31.
- ABBAS, S.—BENCHOHRA, M.—N’GUÉRÉKATA, G. M.: Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
- ABBAS, S.—BENCHOHRA, M.—LAZREG, J. E.—NIETO, J. J.—ZHOU, Y.: Fractional Differential Equations and Inclusions: Classical and Advanced Topics, World Scientific, Hackensack, NJ, 2023.
- ABBAS, S.—BENCHOHRA, M.—GRAEF, J. R.—HENDERSON, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
- ABBAS, S.—BENCHOHRA, M.—HAMIDI, N.: Successive approximations for the Darboux problem for implicit partial differential equations, PanAmer. Math. J. 28 (2018), no. 3, 1–10.
- ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. 47 (2024), no. 13, 10928–10939.
- ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), 313–333.
- ADIGUZEL, R. S.—AKSOY,Ü.—KARAPINAR, E.—ERHAN, I. M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM 115 (2021), no. 3, 155 pp.
- ALSULAMI, H.—GÜLYAZ, S.—KARAPINAR, E.—ERHAN, I.: An Ulam stability result on quasi-b-metric-like spaces, Open Math. 14 (2016), no. 1, 1087–1103.
- ALMEIDA, R.—MORGADO, M. L.: Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math. 361 (2019), 1–12.
- BALEANU, D.—GÜVENÇ, Z. B.—MACHADO, J. A. T.: New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
- BENCHOHRA, M.—BOUAZZAOUI, F.—KARAPINAR, E.—SALIM, A.: Controllability of second order functional random differential equations with delay, Mathematics 10 (2022), 16 pp.
- BENCHOHRA, M.—KARAPINAR, E.—LAZREG, J. E.—SALIM, A.: Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.
- BENCHOHRA, M.—KARAPINAR, E.—LAZREG, J. E.—SALIM, A.: Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives. Springer, Cham, 2023.
- BENKHETTOU, N.—AISSANI, K.—SALIM, A.—BENCHOHRA, M.—TUNC, C.: Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), 79–94.
- BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: Existence and oscillatory results for Caputo tempered fractional differential equations and inclusions, Mathematica Appl. 52 (2024), no. 1, 149–171.
- BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: On implicit neutral Caputo tempered fractional differential equations with delay, Appl. Math. E-Notes 24 (2024), 424–442.
- BETTAYEB, N.—SALIM, A.—LAZREG, J. E.—BENCHOHRA, M.: On implicit neutral tempered ψ-Caputo fractional differential equations with delay via densifiability techniques, Adv. Theory Nonl. Anal. Appl. 7 (2023), no. 5, 44–65.
- CHEN, H. Y.: Successive approximations for solutions of functional integral equations, J. Math. Anal. Appl. 80 (1981), 19–30.
- DEBLASI, F. S.—MYJAK, J.: Some generic properties of functional differential equations in Banach space, J. Math. Anal. Appl. 67 (1979), 437–451.
- FAINA, L.: The generic property of global convergence of successive approximations for functional differential equations with infinite delay, Commun. Appl. Anal. 3 (1999), 219–234.
- GRANAS, A.—DUGUNDJI, J.: Fixed Point Theory, Springer-Verlag, New York, 2003.
- KARAPINAR, E.—SEVINIK-ADIGÜZEL, R.—AKSOY,Ü.—ERHAN, ˙I. M.: Anew approach to the existence and uniqueness of solutions for a class of nonlinear q-fractional boundary value problems, Appl. Comput. Math. 42 (2025), no. 2, 235–249.
- KILBAS, A. A.—SRIVASTAVA, H. M.—TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam, 2006.
- KRIM, S.—SALIM, A.—BENCHOHRA, M.: Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay, Filomat 37 (2023), no. 22, 7491–7503.
- KRIM, S.—SALIM, A.—BENCHOHRA, M.: On implicit Caputo tempered fractional boundary value problems with delay, Lett. Nonlinear Anal. Appl. 1 (2023), no. 1, 12–29.
- LI, C.—DENG, W.—ZHAO, L.: Well-posedness and numerical algorithm for the tempered fractional differential equations, Discr. Contin. Dyn. Syst. Ser. B 24 (2019), 1989–2015.
- OBEIDAT, N. A.—BENTIL, D. E.: New theories and applications of tempered fractional differential equations, Nonlinear Dyn. 105 (2021), 1689–1702.
- SABZIKAR, F.—MEERSCHAERT, M. M.—CHEN, J.: Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14–28.
- SAMKO, S. G.—KILBAS, A. A.—MARICHEV, O., I.: Fractional Integrals and Derivatives. Theory and Applications, (Engl. Trans. from the Russian) Gordon and Breach, Amsterdam, 1987.
- SHIN, J. S.: Global convergence of successive approximations of solutions for functional differential equations with infinite delay, Tohoku Math. J. 39 (1986), 557–574.
- SHIRI, B.—WU, G.—BALEANU, D.: Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math. 156 (2020), 385–395.
- SIBACHIR, F.—ABBAS, S.—BENBACHIR, M.—BENCHOHRA M.—N’GUÉRÉKATA, G. M.: Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations, Cubo 23 (2021), no. 1, 145–159.
- TARASOV, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Higher Education Press, Springer, Heidelberg; Beijing, 2010.
- ZHOU, Y.: Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.