Have a personal or library account? Click to login
Neumann Problem with a Nonlinear p(x)-Elliptic Equation Solved by Topological Degree Methods Cover

Neumann Problem with a Nonlinear p(x)-Elliptic Equation Solved by Topological Degree Methods

Open Access
|Dec 2025

References

  1. ABBASSI, A.—AZROUL, E.—BARBARA, A.: Degenerate p(x)-elliptic equation with second membre in L1, Advances in Science, Technology and Engineering Syst. J. 2 (2017), no. 5, 45–54.
  2. ABBASSI, A.—ALLALOU, C.—KASSIDI, A.: Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory, 20 (2020), no. 3, 229–241.
  3. ABBASSI, A.—ALLALOU, C.—KASSIDI, A.: Topological degree methods for a Neumann problem governed by nonlinear elliptic equation, Moroccan J. of Pure and Applied Analysis, 6 (2020), no. 2, 231–242.
  4. AKDIM, Y.—ALLALOU, C.—EL GORCH, N.: Existence of renormalized solutions for nonlinear elliptic problems in weighted variable-exponent space with L1-data, Gulf J. Math. 6 (2018), no. 4. 151–165
  5. AIZICOVICI, S.—PAPAGEORGIOU, N. S.—STAICU, V.: Nodal solutions for nonlinear nonhomogeneous Neumann equations, Topol. Methods Nonlinear Anal. 43 (2014), 421–438.
  6. ATKINSON, C.—CHAMPION, C. R.: Some boundary value problems for the equation ∇.(|∇φ|Nφ) = 0, Quart. J. Mech. Appl. Math. 37 (1984), no., 401–419.
  7. ATKINSON, C.—JONES C. W.: Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo plastic fluid, Quart. J. Mech. Appl. Malh. 27 (1974), 193–211.
  8. BARANGER, J.—NAJIB, K.: Numerical analysis for quasi-Newtonian flow obeying the power Iaw or the Carreau law, Numer. Math. 58 (1990), 35–49.
  9. BERKOVITS, J.: Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations, 234 (2007), no. 1, 289–310.
  10. BONANNO, G.—D’AGUI, G.—SCIAMMETTA, A.: Nonlinear elliptic equations involving the p-laplacian with mixed Dirichlet-Neumann boundary conditions, Opuscula Mathematica 39 (2019), no. 2. 159–174.
  11. BORSUK, M.: Existence of bounded weak solutions of the Robin problem for a quasi-linear elliptic equation with p(x)-Laplacian, Electron. J. Qual. Theory of Differ. Equ. 16 (2019), 1–11.
  12. BROWDER, F. E.: Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N. S.), 9 (1983), 1–39.
  13. O’REGAN, D.—CHO, Y. J.—CHEN, Y. Q.: Topological Degree Theory and Applications. Series in Mathematical Analysis and Applications, 10. Chapman & Hall/CRC, Boca Raton, FL, 2006.
  14. DRABEK, P.—KUFNER, A.—MUSTONEN, V.: Pseudo-monotonicity and degenerate or singular elliptic operators, Bull. Austral. Math. Soc. 58 (1998), 213–221.
  15. FILIPPAKIS, M.—PAPAGEORGIOU, N. S.: Nodal solutions for Neumann problems with a nonhomogeneous differential operator. Funkcial. Ekvac. 56 (2013), 63–79.
  16. FAN, X. L.—ZHAO, D.: On the generalized Orlicz-Sobolev space W k,p(x)(Ω) . J. Gansu Educ, College 12 (1998), no. 1, 1–6.
  17. FAN X. L.—ZHAO, D.: On the spaces Lp(x)(Ω) and W m,p(x)(Ω). J. Math Anal. Appl. 263 (2001), 424–446.
  18. GARĆIA AZORERO, J. P.—PERAL ALONSO, I.: Existence and nonuniqueness for the p-Laplacian. Commun. Partial Differential Equations 12 (1987), no. 12, 126–202.
  19. GASIŃSKI, L.—PAPAGEORGIOU, N. S.: Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Commun. Pure Appl. Anal. 13 (2014), 1491–1512.
  20. HU, S. C.— PAPAGEORGIOU, N. S.: Nonlinear Neumann problems with indefinite potential and concave terms. Commun. Pure Appl. Anal. 14 (2015), 2561–2616.
  21. HE, T.—YAO, Z. A.— SUN, Z.: Multiple and nodal solutions for parametric Neumann problems with nonhomogeneous differential operator and critical growth, J. Math. Anal. Appl. 449 2017, no. 2, 1133–1151.
  22. KAWOHL, B.: On a family of torsional creep problems, J. R. Angew. Math. 410 (1990), 1–22.
  23. LERAY, J.— SCHAUDER, J.: Topologie etéquations fonctionnelles, Ann. Sci. Ec. Norm. 51 (1934), 45–78.
  24. KOVÁČIK, O.—RÁKOSŃIK, J.: On space Lp(x)(Ω) and W 1,p(x)(Ω). Czechoslovak Math. J. 41 (1991), no. 116, 592–618.
  25. LIU, S.: Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations 66 (2001), 6. pp.
  26. LIU, Z.—MOTREANU, D.—ZENG, S.: Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Art. 28, 22 pp.
  27. MOTREANU, D.—MOTREANU, V. V.—PAPAGEORGIOU, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York, 2014.
  28. PHILIP, J. R.: N-diffusion, Aust. J. Phiys. 14 (1961), 1–13.
  29. ZHAO, D.—QIANG, W. J.— FAN, X. L.: On generalized Orlicz-Sobolev spaces Lp(x)(Ω). J. Gansu Sci 9, (1997), no. 2. 1–7.
  30. ZEIDER, E.: Nonlinear Functional Analysis and its Applications, II \ B: Nonlinear Monotone Operators, Springer, New York, 1990.
DOI: https://doi.org/10.2478/tmmp-2025-0021 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 15 - 34
Submitted on: Jan 21, 2022
Accepted on: Aug 8, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Soukaina Yacini, Abderrazak Kassidi, Chakir Allalou, Khalid Hilal, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.