Have a personal or library account? Click to login
An Unconventional Finite Difference Technique for the Solution of Two-Point Third-Order Boundary Value Problems in ODEs Cover

An Unconventional Finite Difference Technique for the Solution of Two-Point Third-Order Boundary Value Problems in ODEs

Open Access
|Dec 2025

References

  1. GREGUŠ, M.: Third Order Linear Differential Equations, (Translated from the Slovak by J. Dravecký.) Mathematics and its Applications (East European Series) Vol. 22, D. Reidel Publishing Co., Dordrecht 1987.
  2. BLASIUS, H.: Grenzschichten in flüssigkeiten mit kleiner Reibung, Zeitschrift für Angewandte Math. Phys. 56 (1908), 1–37.
  3. FALKNER, V. M.—SKAN, S. W.: Some approximate solutions of the boundary-layer equations, Philosoph. Magazine. 12 (1931), no. 80, 865–896.
  4. JACKSON, L. K.: Existence and uniqueness of solutions of boundary value problems for third order differential equations, J. Differential Equations 13 (1973), no. 3, 432–437.
  5. CORDUNEANU, C.: Boundary value problems on infinite intervals. In: Lecture Notes, Trieste, 1977.
  6. AGARWAL, R. P.: On boundary value problems for y′′′ = f (x, y, y, y′′), Bull. Inst. Math. Acad. Sinica 12(2) (1984), 153–157.
  7. BAXLEY, J. V.: Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. Math. Anal. Appl. 147 (1990), no. 1, 122–133.
  8. KLAMKIN, M. S.: On the transformation of a class of boundary value problems into initial value problems for ordinary differential equations, SIAM Review 4 (1962), 43–47.
  9. NA, T. Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York 1979.
  10. LENTINI, M.—KELLER, H. B.: Boundary value problems on semi-infinite intervals and their numerical solution, SIAMJ. Numer. Anal. 17 (1980), no. 4, 577–604.
  11. RASHEED, U. R.—KHAN, Z.—KHAN, I.—CHING, D. L. C.—NISAR, K. S.: Numerical and analytical investigation of an unsteady thin film nanofluid flow over an angular surface, Processes, 7 (2019) no. (8), p. 486.
  12. CEBECI, T.—BRADSHAW, P.: Momentum Transfer in Boundary Layers. In: Series in Thermal and Fluids Engineering, Hemisphere Publishing Corporation, Washington 1977.
  13. COUNTRYMAN, M.—KANNAN, R.: Nonlinear Boundary Value Problems on Semi-Infinite Intervals, Computers Math. Applic. 28 (1994), no. 10–12, 59–75.
  14. ASAITHAMBI, A.: A finite-difference method for the Falkner-Skan equation, Appl. Math. and Comput. 92 (1998), no. 2–3, 135–141.
  15. NOOR, M. A.—AL-SAID, E. A.: Finite-difference method for a system of third-order boundary-value problems, J. Optim. Theory Appl. 122 (2002), 627–637.
  16. PANDEY, P. K.: A finite difference method for the numerical solving general third order boundary-value problem with an internal boundary condition, Russian Mathematics, 61 (2017), no. 12, 29–38.
  17. ELBARBARY, E. M. E.: Chebyshev finite difference method for the solution of boundary-layer equations, Appl. Math. and Comput. 160 (2005), no. 2, 487–498.
  18. ZHIYUAN, L.—WANG, Y.—TAN, F.: The solution of a class of third-order boundary value problems by the reproducing kernel method, Abs. Appl. Anal. 1 (2012), 1–11; DOI: 10.1155/2012/195310.
  19. PANDEY, P. K.: Solving third-order boundary value problems with quartic splines, Springerplus 5 (2016), no. 1, 1–10; DOI 10.1186/s40064-016-1969-z.
  20. RAHMAN, M. M.—KHAN, S.—AKBAR, M. A.: Numerical and analytical solutions of new Blasius equation for turbulent flow, Heliyon 9 (2023), no. 3, e14319.
  21. BOYD, J. P.: Chebyshev and Fourier Spectral Methods, Dover, New York, USA, 2001.
  22. CANUTO, C.—HUSSAINI, M. Y.—QUARTERONI, A.—ZANG, T. A. JR.: Spectral Methods-Fundamentals in Single Domains. Springer-Verlag, Berlin, 2006.
  23. HORN, R. A.—JOHNSON, C. R.: Matrix Analysis. Cambridge University Press, New York, NY 10011, USA, 1990.
  24. VARGA, R. S.: Matrix Iterative Analysis. Second Revised and Expanded Edition, Springer-Verlag, Berlin, 2000.
  25. FRÖBERG, C. E.: Introduction to Numerical Analysis. (2nd ed.), Addison-Wesley, New York, 1969.
  26. JAIN, M. K.—IYENGER, S. R. K.—JAIN, R. K.: Numerical Methods for Scientific and Engineering Computation (2/e), Willey Eastern Limited, New Delhi, 1987.
DOI: https://doi.org/10.2478/tmmp-2025-0020 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 14
Submitted on: Nov 20, 2020
Accepted on: Jul 6, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Pramod Kumar Pandey, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.