Have a personal or library account? Click to login
A Public Key Cryptosystem Using Matrix Over the Finite Ring Cover

A Public Key Cryptosystem Using Matrix Over the Finite Ring

Open Access
|Oct 2025

References

  1. KAUR, R.—GABRIJELČIČ, D.—KLOBUČAR, T.: Artificial intelligence for cybersecurity: Literature review and future research directions, Information Fusion 97 (2023), Article (KAUR2023101804).
  2. JURAEV, G. U.—MAVLONOV, A. B.: Delving into potential asymmetric cryptographic algorithms for the post-quantum era, In: 2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE, 2024, pp. 2510–2513.
  3. KASHEFI, E.—KERENIDIS, I.: Statistical zero knowledge and quantum one-way functions,Theoret.Comput.Sci. 378 (2007), no. 1, 101–116.
  4. ADAMS, C.—FARRELL, S.: Rfc2510: internet X. 509 Public Key Infrastructure Certificate Management Protocols, March 1999.
  5. HILL, L.: Cryptography in an algebraic alphabet, Amer. Math. Monthly 36 (1929), no. 6, 306–312.
  6. HILL L.: Concerning certain linear transformation apparatus of cryptography, Amer. Math. Monthly 38 (1931), no. 3, 135–154.
  7. LEELA D.—SHAW, S-M.—NANDAKISHORE S. —ARUNAKUMARI, M.—SAI, M. G.—MAHABOOB, B.: Matrix applications in cryptography, In: AIP Conference Proceedings, International Conference on Recent Advances in Materials and Manufacturing, ICRAMM 2023.
  8. NASERI, A. R.—ABBASI, A.—ATANI, R. E.: A new public key cryptography using Mq matrix,J.Math. Modeling 11 (2023), no. 4, 681–693
  9. HONG, M.—CHEE, W. L.: Hill cipher modifications and dynamic cryptosystem design, In: Proc. - 2023 7th International Conference on Cryptography, Security and Privacy, CSP 2023, pp. 176–180.
  10. SUNDARAYYA, P.—VARA PRASAD, M. G.: A public key cryptosystem using Affine Hill Cipher under modulation of prime number, J. Inf. Optim. Sci. textbf40 (2019), no. 4, 919–930.
  11. MESHRAM, C,—LI, X.: New efficient key authentication protocol for public key cryptosystem using DL over multiplicative group, J. Inf. Optim. Sci. 39 (2018), no. 2, 391–400.
  12. EZHILMARAN, D.—MUTHUKUMARAN, V.: Key exchange protocol using decomposition problem in near ring,GaziUniv. J. Sci. 29 (2016), no. 1, 123–127.
  13. KRISHNA, A. V. N.—NARAYANA, A. H.—VANI, K. M.: A novel approach with matrix based public key cryptosystems, J. Discret. Math. Sci. Cryptogr. 20 (2017), no. 2, pp. 407–412.
  14. KARATAS, Z. Y.—LUY, E.—GONEN, B.: Public key cryptosystem based on matrices, Int. J. Comput. Appl. 182 (2019), no. 42, 47–50.
  15. YUMMAN, M.—SHAH, T.—HUSSAIN, I.: Asymmetric cryptosystem on matrix algebra over a chain ring, Symmetry 13 (2021), no. 45, 1–11.
  16. M. MAXRIZAL: Public key cryptosystem based on singular matrix, Trends Sciences 19 (2022), no. 3, p. 2147.
  17. AHMED, MD. H.—TANTI, J.—PUSHP, S.: A public key cryptosystem using cyclotomic matrices, Coding Theory — Recent Adv. New Perspect. Appl. (2021), 86–132.
  18. SREE PARVATHI, P. M.—SRINIVASAN, C .: Matrix Lie group as an algebraic structure for NTRU like cryptosystem, J. Discret. Math. Sci. Cryptogr. 23 (2020), no. 7, 1455–1464.
  19. LIU, J.—ZHANG, H.—JIA, J.: Cryptanalysis of schemes based on polynomial symmetrical decomposition, Chinese J. Electron. 26 (2017), no. 6, 1139–1146.
  20. AUERBACH, B.—GÜNTHER, C. U.—PIETRZAK, K.: Trapdoor memory-hard functions, In: Advances in Cryptology — EUROCRYPT 2024. 43rd Annual international conference on the theory and applications of cryptographic techniques, Zurich, Switzerland, May 26–30, 2024; Proceedings. Part III, pp. 315–344.
  21. TAO, C.—DIENE, A.—TANG, S.—DING, J.: Simple matrix scheme for encryption, In: Gaborit, P., ed. Post-Quantum Cryptography (PQCrypto 2013), Lecture Notes in Computer Science, Vol 7932. Springer-Verlag, Berlin, 2013. pp. 231–242.
  22. TAO, C.—XIANG, H.—PETZOLDT, A.—DING, J.: Simple matrix a multivariate public key cryptosystem (MPKC) for encryption, Finite Fields Appl. 35 (2015), 352–368.
  23. C. GU: Cryptanalysis of simple matrix scheme for encryption, IACR Cryptol. ePrint Arch. 2016 (2016), p. 1075.
  24. MOLDOVYAN, A. A.—MOLDOVYAN, D. N.—MOLDOVYAN, N. A.: A new approach to the development of multivariate cryptography algorithms, Cryptography 2 (2023), p. 54. (In Russian)
  25. MAVLONOV, A.: Investigation of the possibility of using matrix multiplication in asymmetric cryptographic systems, Academic research in educational sciences, 2 (2021), no. 10, 89–93.
DOI: https://doi.org/10.2478/tmmp-2025-0018 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 69 - 92
Submitted on: Sep 1, 2025
|
Accepted on: Sep 19, 2025
|
Published on: Oct 13, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Gayrat Juraev, Alisher Mavlonov, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.