References
- BOGDANOV I. I.: Two theorems on the focus-sharing ellipses: A three-dimensional view, J. Classical Geometry 1 (2012), 1–5. https://api.semanticscholar.org/CorpusID:201824203.
- LOPEZ DE MEDRANO, S.: Topology and Geometry of Intersections of Ellipsoids in ℝn. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 361. Springer, Cham, [2023] Springer Nature, Cham, 2023. https://doi.org/10.1007/978-3-031-28364-2.
- JUKL, M.: Remark on quadrics in projective klingenberg spaces over a certain local algebra, Mathematics, Basel 8 (2020), no. 12, 2168–2176; https://doi.org/10.3390/math8122168.
- LAWRENCE, B. E.: Note on focus sharing conics, Math. Gaz. 21 (1937), no. 243, 160–161; https://doi.org/10.2307/3607595.
- MACNEISH, H. F.: Questions and Discussions: Discussions: The intersections of two conic sections with a common focus.Amer. Math. Monthly, 28 (1921), no. 6–7, 260–262; https://doi.org/10.2307/2973334.
- MARTÍN-PASTOR, A.— NARVAEZ-RODRIGUEZ, R.: New properties about the intersection of rotational quadratic surfaces and their applications in architecture,Nexus Netw J. 21 (2019), 175–196; https://doi.org/10.1007/s00004-018-0420-x.
- NEVILLE, E. H.: Focus-sharing set of three conics, The Mathematical Gazette, 20 (1936), 182–183; https://api.semanticscholar.org/CorpusID:125719240.
- ODEHNAL, B.—STACHEL, H.—GLAESER, G.: The Universe of Quadrics. Springer--Verlag GmbH, Germany, 2020; https://doi.org/10.1007/978-3-662-61053-4.
- PARAMETRICHOUSE: Archimedean pavillon; https://parametrichouse.com/archimedean-pavilion/.
- PEVZNER, S. L.: The geometry of pairs of quadrics in projective space, Sibirsk. Mat. Zh. Siberian Math. J. 10 (1969), no. 1, 82–96; https://doi.org/10.1007/BF01208411.
- SARKOCIOVÁ REMEŠÍKOVÁ, M.—SARKOCI, P.—TRNOVSKÁ. M.: Length-minimizing led trees, Operations Research Forum 6 (2025), Article no. 20, https://doi.org/10.1007/s43069-025-00416-1.