References
- ANDERSEN, O. B.—ABULAITIJIANG, A.—ZHANG, S.—ROSE, S. K.: A new high resolution Mean Sea Surface (DTU21MSS) for improved sea level monitoring, In: Proceedings of the EGU General Assembly (EGU21-16084), Vienna, Austria, April 19–30, 2021.
- BACKUS, G. E.: Application of a non-linear boundary-value problem for Laplace’s equation to gravity and geomagnetic intensity surveys, Quart. J. Mech. Appl. Math. 2 (1968), 195–221.
- BARTHELMES, F.: Definition of Functionals and of the Geopotential and Their Calculation From Spherical Harmonic Models Deutsches GeoForschungsZentrum GFZ. Scientific Technical Report STR09/02, Potsdam, Germany, 2013.
- BECKER, J. J.—SANDWELL, D. T.—SMITH, W. H. F.—BRAUD, J.— BINDER, B.—DEPNER, J.—FABRE, D.—FACTOR, J.—INGALLS, S.— KIM, S. H.—LADNER, R.— MARKS, K.—NELSON, S.—PHARAOH, A.—TRIMMER, R.—ROSENBERG, J.—VON WALLACE, G.—WEATHERALL, P.: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS,MarineGeodesy, 32 (2009), no. 4, 355–371, https://doi.org/10.1080/01490410903297766.
- BETTESS, P.: Infinite elements, Internat. J. Numer. Methods Engnr. 11 (1977), no. 1, 53–64.
- BETTESS, P.: More on infinite elements, Internat. J. Numer. Methods Engnr. 15 (1983), no. 11, 1613–1626.
- BJERHAMMAR, A.—SVENSSON, L.: On the geodetic boundary value problem for a fixed boundary surface—A satellite approach, Bulletin Géodésique 57 (1983), no. 1–4, 382–393.
- BRENNER, S. C.—SCOTT, L. R.: The Mathematical Theory of Finite Element Methods. 2nd ed. Springer-Verlag, Berlin, 2002.
- CARRIÓN SÁNCHEZ, J. L.—DE FREITAS, S.—BARZAGHI, R.: Offset evaluation of the ecuadorian vertical datum related to the IHRS, Bulletin of Geodetic Sciences 24 (2018), no. 4, 503–525, doi: 10.1590/s1982-21702018000400031.
- DÍAZ, G.—DÍAZ, J. I.—OTERO, J.: On an oblique boundary value problem related to the Backus problem in geodesy, Nonlinear Anal. Real World Appl. 7 (2006), no. 2, 147–166.
- DÍAZ, G.—DÍAZ, J. I.—OTERO, J.: Construction of the maximal solution of Backus’ problem in geodesy and geomagnetism, Stud. Geophys. Geod. 55 (2011), no. 3, 415–440.
- FAŠKOVÁ, Z.—ČUNDERLÍK, R.—MIKULA, K.: Finite element method for solving geodetic boundary value problems,J.Geodesy 84 (2010), no. 2, 135-–144.
- HECK, B.: On the non-linear geodetic boundary value problem for a fixed boundary surface, Bull. Geodésy 63 (1989), no. 1, 57–67.
- HECK, B.—SEITZ, K.: Effects of Non-Linearity in the Geodetic Boundary Value Problems. German Geodetic Kommission (DGK), Series A, No. 109, Munchen, Germany, 1993.
- HOFMANN-WELLENHOF, B.—MORITZ, H.: Physical Geodesy. 2nd ed. Springer--Verlag, Vienna, 2006, https://doi.org/10.1007/978-3-211-33545-1
- HOTINE, M.: Mathematical Geodesy. ESSA Monograph Vol. 2, US Dept. of Commerce, Washington 1969.
- JEKELI, C.: A numerical study of the divergence of spherical harmonic series of the gravity and height anomalies at the Earth’s surface, Bull. Géodésique, 57 (1983), no. 1–4, 10–28, doi: 10.1007/BF02520909.
- KOCH, K. R.—POPE, A. J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth, Bulletin Géodésique, 46 (1972), 467–476.
- MACÁK, M.—MIKULA, K.—MINARECHOVÁ, Z.—ČUNDERLÍK, R.: On an iterative approach to solving the nonlinear satellite-fixed geodetic boundary-value problem, In: IAG Symp 142 (2016), pp. 185–192.
- MACÁK, M.—MINARECHOVÁ, Z.—ČUNDERĹIK,R.—MIKULA,K.: The finite element method as a tool to solve the oblique derivative boundary value problem in geodesy, Tatra Mt. Math. Publ. 75 (2020), no. 1, 63–80.
- MACÁK, M.—MINARECHOVÁ, Z.—TOMEK, L.—ČUNDERLÍK, R.—MIKULA K.: Solving the fixed gravimetric boundary value problem by the finite element method using mapped infinite elements, Computational Geosciences, 27 (2023), 649–662.
- MACÁK, M.—MINARECHOVÁ, Z.—ČUNDERLÍK, R.—MIKULA, K.: Agravity field modelling in mountainous areas by solving the nonlinear satellite-fixed geodetic boundary value problem with the finite element method, Acta Geodaetica et Geophysica, 58 (2023), 305–320.
- MARQUES, J. M. M. C.—OWEN, D. R. J.: Infinite elements in quasi-static materially nonlinear problems, Computers & Structures, 18 (1984), no. 4, 739–751.
- MINARECHOVÁ, Z.—MACÁK, M.—ČUNDERLÍK, R.—MIKULA, K.: On the finite element method for solving the oblique derivative boundary value problems and its application in local gravity field modelling,J. Geodesy, 95 (2021), art. no. 70.
- MOLODENSKII, M. S.—EREMEEV, V. F.—YURKINA, M. I.: Methods for the Study of the External Gravitational Field and Figure of the Earth. TRUDY Ts NIIGAiK, Vol. 131, Geodezizdat, Moscow, 1960.
- MORITZ, H.: The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior. Wichmann, Karlsruhe, Germany, 1990.
- MORITZ, H.: Classical physical geodesy. In: (W. Freeden, Z. M. Nashed, T. Sonar, eds.), Handbook of Geomathematics, Springer-Verlag, Berlin, Germany, 2010, pp. 127–158.
- PAVLIS, N.K.—HOLMES, S.A.—KENYON, S.C.—FACTOR, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research 117 (2012), Issue B4; https://doi.org/10.1029/2011JB008916
- REDDY, J. N.: An Introduction to the Finite Element Method.3rd ed.McGraw-Hill Education, New York, 2006.
- SACERDOTE, F.—SANSÓ, F.: On the analysis of the fixed-boundary gravimetric boundary-value problem. In: (F. Sacerdote, F. Sansó, eds.), Proceedings of the 2nd Hotine-Marussi Symposium on Mathematical Geodesy, Pisa, Politecnico di Milano, 1989, pp. 507–516.
- SETHIAN, J. A.: Fast Marching Methods. In: (B. Engquist, ed.) Encyclopedia of Applied and Computational Mathematics, Springer-Verlag, Berlin, Heidelberg, 2015.
- SJÖBERG, L. E.: On the Errors of Spherical Harmonic Developments of Gravity at the Surface of the Earth. Report No. 257, Department of Geodetic Science, The Ohio State University, Columbus, OH, USA, 1977.
- STOKES,G.G.: On the variation of gravity on the surface of the Earth,Trans.Cambr. Phil. Soc. 8 (1849), 672–695.
- 34ŠPRLÁK, M.—FAŠKOVÁ, Z.—MIKULA, K.: On the application of the coupled finiteinfinite element method to the geodetic boundary value problem, Studia Geophysica et Geodaetica 55 (2011), 479–487.
- ŠPRLÁK, M.—HAN, S.-C.—FEATHERSTONE, W.: Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (2km) gravity fields of the Moon, 92 (2018), no. 8, 847–862, doi: 10.1007/s00190-017-1098-7.
- ŠPRLÁK, M.—HAN, S.-C.—FEATHERSTONE, W.: Spheroidal forward modelling of the gravitational fields of 1 Ceres and the Moon,Icarus 335, art. no. 113412, https://doi.org/10.1016/j.icarus.2019.113412
- ŠPRLÁK, M.—HAN, S.-C.: On the use of spherical harmonic series inside the minimum Brillouin sphere: Theoretical review and evaluation by GRAIL and LOLA satellite data, Earth-Science Reviews 222, 2021, art. no. 103739, https://doi.org/10.1016/j.earscirev.2021.103739
- ZIENKIEWICZ, O. C.—EMSON, C.—BETTESS, P.: A novel boundary infinite element, Internat.J.Numer.Meth. Engnr. 19 (1983), 340–393.
- ZIENKIEWICZ, O. C.—BANDO, K.—BETTESS, P.—EMSON, C.—CHIAM, T. C.: Mapped infinite elements for exterior wave problems, Internat. J. Numer. Meth. Engnr. 21 (1985), 1229–1251.