Have a personal or library account? Click to login
A Study on Dimensions of Continuous Mappings Cover

References

  1. AARTS, J. M.—NISHIURA, T.: Dimension and extensions, North-Holland Mathematical Library, Vol. 48. North-Holland Publishing Co., Amsterdam, 1993.
  2. AMOR, A. B.—LAZAAR, S.—RICHMOND, T.—SABRI, H.: k-primal spaces, Topology Appl. 309 (2022), Paper no. 107907, pp. 14.
  3. ARHANGEL’SKIĬ, A.: On open and almost-open mappings of topological spaces,Dokl. Akad. Nauk SSSR 147 (1962), 999–1002. (In Russian)
  4. BOGATYI, S.—FEDORCHUK, V.—VAN MILL, J.: On mappings of compact spaces into Cartesian spaces, Topol. Appl. 107 (2000), 13–24.
  5. CHARALAMBOUS, M. G.: Dimension Theory. A Selection of Theorems and Counterexamples, Atlantis Studies in Mathematics, vol. 7. Springer, Cham, 2019.
  6. CHATYRKO, V. A.—PASYNKOV, B. A.: On sum and product theorems for dimension Dind, Houston J. Math. 28 (2002), no. 1, 119–131.
  7. CHATYRKO, V. A.: Some questions about dimension Dind, Questions Answers Gen. Topology 40 (2022), no. 1, 1–9.
  8. DRANISHNIKOV, A. N.: The Eilenberg-Borsuk theorem for maps into arbitrary complexes, Math. Sb. 185 (1994), no. 4, 81–90.
  9. DRANISHNIKOV, A.—REPOV, D.—ŠČEPIN, E.: On intersections of compacta of complementary dimensions in Euclidean space, Topol. Appl. 38 (1991), 237–253.
  10. DUBE, T.—ILIADIS, S.—JAN VAN MILL,—NAIDOO, I.: Universal frames, Topology Appl. 160 (2013), 2454–2464.
  11. EGOROV, V.—PODSTAVKIN, JU.: A definition of dimension Dokl. Akad. Nauk SSSR 178 (1968), 774–777. (In Russian)
  12. EILENBERG, S.: Remarque sur un theorem de W. Hurewicz, Fund. Math. 24 (1935), 156–159.
  13. ENGELKING, R.: General Topology, Second edition, Sigma Series in Pure Mathematics Vol. 6. Heldermann Verlag, Berlin, 1989.
  14. ENGELKING, R.: Theory of Dimensions, Finite and Infinite, Sigma Series in Pure Mathematics Vol. 10. Heldermann Verlag, Lemgo, 1995.
  15. GEORGIOU, D. N.—HATTORI, Y.—MEGARITIS, A. C.—SERETI, F.: The dimension Dind of Finite Topological T0-spaces, Math. Slov. 72 (2022), no. 3, 813–829.
  16. GEORGIOU, D. N.—MEGARITIS, A. C.—SERETI, F.: A topological dimension greater than or equal to the classical covering dimension, Houston J. Math. 43 (2017), no. 1, 283–298.
  17. DE GROOT, J.: Topologische Studiën, Compactificatie, Voortzetting van Afbeeldingen en Samenhang. [Topological Studies. Compactification, Extension of Mappings and Connectivity.] Thesis. University of Groningen, Groningen, 1942. 102 pp. (In Dutch)
  18. HUREWICZ, W.:Über Abbildungen von endlichdimensionalen R¨aumen auf Teilmengen Cartesischer R¨aume, Sgb. Preuss. Akad. 34 (1933), 754–768.
  19. HUREWICZ, W.—WALLMAN, H.: Dimension Theory, Princeton Mathematical Series Vol. 4. Princeton University Press, Princeton, NJ, 1941.
  20. ILIADIS, S.: Universal Spaces and Mappings, North-Holland Mathematics Studies Vol. 198. Elsevier Science B. V., Amsterdam, 2005.
  21. ILIADIS, S.: Mappings and universality, Topology Appl. 137 (2004), no. 1–3, 175–186.
  22. KEESLING, J.: Closed mappings which lower dimension, Colloq. Math. 20 (1969), 237–241.
  23. KRZEMPEK, J.: Another approach to dimension of maps, Bull. Polish Acad. Sci. Math. 50 (2002), no. 2, 141–154.
  24. KRZEMPEK, J.: Finite-to-one maps and dimension, Fund. Math. 182 (2004), 95–106.
  25. KULPA, W.: A note on the dimension Dind, Colloq. Math. 24 (1971/72), 181–183.
  26. LELEK, A.: Dimension and mappings of spaces with finite deficiency, Colloq. Math. 12 (1964), 221–227.
  27. LEVIN, M.: Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), 47–52.
  28. LEVIN, M.: On extensional dimension of maps, Topol. Appl. 103 (2000), 33–35.
  29. LEVIN, M.—LEWIS, W.: Some mapping theorems for extensional dimension,Israel J. Math. 133 (2003), 61–76.
  30. MENIX, J.—RICHMOND, T.: The lattice of functional Alexandroff topologies,Order 38 (2021), no. 1, 1–11.
  31. MORITA, K.: On closed mappings and dimension, Proceedings of the Japan Academy 32 (1956), 161–165.
  32. NAGAMI, K.: Some theorems in dimension theory for non-separable spaces, Journal of the Mathematical Society of Japan 7 (1957), 80–92.
  33. NAGAMI, K.: Dimension Theory, Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970.
  34. NAGATA, J.: Modern Dimension Theory. (Revised edition). Sigma Series in Pure Mathematics, Vol 2. Heldermann Verlag, Berlin, 1983.
  35. NISHIURA, T.: On the dimension of semi-compact spaces and their quasicomponents, Colloq. Math. 12 (1964), 7–10.
  36. PASYNKOV, B. A.: On universal compact spaces of given dimension, Fund. Math. 60 (1967), 285–308.
  37. PASYNKOV, B. A.: On the dimension and geometry of mappings, Dokl. Akad. Nauk SSSR 221 (1975), 543–546. (In Russian)
  38. PASYNKOV, B. A.: On the dimension of rectangular products,SovietMath. Dokl. 16 (1975), 344–347.
  39. PASYNKOV, B. A.: Extension to mappings of certain notions and assertions concerning spaces, Mappings and Functors Vol. 143, (1984) 72–102, Izdat. MGU, Moscow, 1984 (In Russian)
  40. PASYNKOV, B. A.: On geometry of continuous maps of finite-dimensional compact metric spaces, Trudy Steklov Mat. Inst. 212 (1996), 147–172. (In Russian)
  41. PASYNKOV, B. A.: On the geometry of continuous mappings of finite-dimensional metrizable compacta, Tr. Mat. Inst. Steklova 212 (1996), Mappings and Dimension, 147–172. (In Russian)
  42. PASYNKOV, B. A.: On geometry of continuous maps of countable functional weight, Fundam. Prikl. Mat. 4 (1998), 155–164. (In Russian)
  43. PEARS, A. R.: Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
  44. REICHAW, M.: On a theorem of W. Hurewicz on mappings which lower dimension, Colloq. Math. 26 (1972), 323–329.
  45. STERNFELD, Y.: On finite-dimensional maps and other maps with “small” fibers, Fund. Math. 147 (1995), 127–133.
  46. TUNCALI, H. M.—VALOV, V.: On dimensionally restricted maps, Fund. Math. 175 (2002), 35–52.
  47. TUNCALI, H. M.—VALOV, V.: On finite-dimensional maps II, Topol. Appl. 132 (2003), 81–87.
  48. TUNCALI, H. M.—VALOV, V.: On finite-dimensional maps, Tsukura J. Math. 28 (2004), no. 1, 155–167.
  49. TUNCALI, H. M.—VALOV, V.: On Finite-to-One Maps, Canad. Math. Bull. Vol. 48 (2005), no. 4, 614–621.
  50. TUNCALI, H. M.—VALOV, V.: On regularly branched maps, Topol. Appl. 150 (2005), 213–221.
  51. TORUŃCZYK, H.: Finite to one restrictions of continuous functions, Fund. Math. 75 (1985), 237–249.
  52. TURYGIN, Y. A.: Approximation of k-dimensional maps, Topol. Appl. 139 (2004), 227–235.
  53. VALOV, V.: Maps with dimensionally restricted fibers, Colloq. Math. 123 (2011), 239–248.
  54. WILLIAMS, R.: The effect of maps upon the dimension of subsets of the domain space, Proc. Amer. Math. Soc. 8 (1957), 580–583.
DOI: https://doi.org/10.2478/tmmp-2025-0013 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 143 - 164
Submitted on: Nov 29, 2024
|
Accepted on: Jun 13, 2025
|
Published on: Nov 29, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Dimitrios Georgiou, Yasunao Hattori, Athanasios Megaritis, Fotini Sereti, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.