Have a personal or library account? Click to login
On θ-Hurewicz and α-Hurewicz Topological Spaces Cover
Open Access
|Nov 2025

References

  1. AL-ZOUBI, K. Y.: S-paracompact spaces, Acta Math. Hungar. 110 (2006), 165–174.
  2. AQSA—KHAN, MOIZ UD DIN: On nearly Hurewicz spaces,Open Math. 17 (2019), 1310–1318. https://doi.org/10.1515/math-2019-0095
  3. BONANZINGA, M.—CAMMAROTO, F.—KOĆINAC, LJ. D. R.: Star-Hurewicz and related properties, Appl. Gen. Topol. 5 (2004), 79–89.
  4. DICKMAN, R. F.—PORTER, J. R.: θ-closed subsets of Hausdorff spaces, Pac.J.Appl. Math. 59 (1975), 407–415.
  5. DORSETT, C.: Semi-regular spaces, Soochow J. Math. 8 (1982), 45–53.
  6. ENGELKING, R.: General Topology. (Revised and Cmpleted Edition). In: Sigma Series in Pure Mathematics, Vol.6, Heldermann, Berlin, 1989.
  7. ESPELIE, M. S.—JOSEPH, J. E.: Some properties of θ-closure, Canadian J. Math. 33, (1981), no. 1, 142–149.
  8. EVANS, D.: Role of θ-Closure in the Study of H-Closed Spaces. Master’s Thesis, Morgan State University. 2021.
  9. FOMIN,S.V.: Extensions of topological spaces, Doklady Akad. Nauk SSSR, 32 (1941), 114–116.
  10. FOMIN, S.: Extensions of topological spaces, Ann. Math. 44 (1943), 471–480.
  11. KUMAR, G.—TYAGI, B. K.: On variants of θ-Menger spaces, Filomat 37 (2023), no. 15, 5075–5085.
  12. HUREWICZ, W.:Über die Verallgemeinerung des Borelschen Theorems,Math. Z. 24 (1925), 401–425.
  13. HUREWICZ, W.:Über Folgen stetiger Functionen, Fund. Math. 9 (1927), 193–204,
  14. JANKOVIĆ, D. S.: A note on mappings of extremally disconnected spaces,Acta Math. Hungar. 46 (1985), no 1–2, 83–92.
  15. KOČINAC, L. D. R.: Generalized open sets and selection properties, Filomat 33 (2019), no. 5, 1485–1493.
  16. KOČINAC, L. D. R.—SABAH, A. —KHAN, M. D.—DJAMILA, SEBA: Semi-Hurewicz spaces, Hacettepe J. Math. Statist. 46 (2017), no. 11, 53–66.
  17. KOČINAC, L. D. R.: On mildly Hurewicz spaces, Internat. Math. Forum 11, (2016), no. 12, 573–582.
  18. KOČINAC, L. D. R.: The Pixley-Roy topology and selection principles, Quest. Answers Gen. Topology 19 (2001), no. 2, 219–225.
  19. KOHLI, J. K.—DAS, A. K.:, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Appl. Gen. Topol. 7 (2006), 233–244.
  20. LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
  21. LONG, P. E.—HERRINGTON, L. L.: The Tθ-topology and faintly continuous functions, Kyungpook Math. J. 22 (1982), no. 1, 7–14.
  22. LONG, P. E.—HERRINGTON, L. L.: Strongly θ-continuous functions, J. Korean Math. Soc. 18 (1981), 21–28.
  23. MAHESHWARI, S. N.—THAKUR, S. S.: On α-compact spaces, Bull. Inst. Math. Acad. Sinica, 13 (1985), 341–347.
  24. MAHESHWARI, S. N.—THAKUR, S. S.: On α-irresolute mappings,Tamkang J. Math. 11 (1980), 209–214.
  25. MASHHOUR, A. S.—ABD EL-MONSEF, M. E.—EL-DEEP, S. N.: On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
  26. NJÅSTAD, O.: On some classes of nearly open sets, Pacific J. Math.15 (1965), no. 3, 961–970.
  27. PORTER, J. R.—WOODS, G.: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag Berlin. 2012.
  28. SCHEEPERS, M.: Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31–62.
  29. SONG, Y.-K—LI, R.: The almost Hurewicz spaces, Quest. Ans. Gen. Topology. 31 (2013), 131–136.
  30. STEEN, L. A.—SEEBACH, J. A.: Counterexamples in Topology. Springer-Verlag, United States, 1970.
  31. VE1ICKO, N. V.: H-closed topological spaces, (Russian) Mat. Sb. (N.S.) 70 (1966), 98–112; Amer. Math. Soc. Transl. 78 (1968), 102–118). https://doi.org/10.1090/trans2/078/05
DOI: https://doi.org/10.2478/tmmp-2025-0012 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 127 - 142
Submitted on: Jun 19, 2024
Accepted on: May 6, 2025
Published on: Nov 29, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Gaurav Kumar, Sumit Mittal, BrijK. Tyagi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.