References
- ABE, Y.—SAWANO, Y.: Littlewood-Paley characterization of discrete Morrey spaces and its applications to the discrete martingale transform, Matematiche LXXVIII (2023), no. 2, 337–358.
- ALIEV, R. A.—AHMADOVA, A. N.: Boundedness of discrete Hilbert transform on discrete Morrey spaces,Ufa Math. J. 13 (2021), 98–109.
- BOURGAIN, J.: On the restriction and multiplier problems in ℝ3, in: Geometric Aspects of Functional Analysis (1989–1990), in: Lecture Notes in Math. Vol. 1469, Springer, Berlin, 1991, pp. 179–191.
- DIARRA, N: Hardy-Littlewood-Sobolev Theorem for Bourgain-Morrey Spaces and Approximation, European J. Math. Anal. 4 (2024) 16, doi: 10.28924/ada/ma.4.16.
- GUNAWAN, H.—KIKIANTY, E.—SAWANO, Y.—SCHWANKE, C.: Three geometric constants for Morrey spaces, Bull. Korean Math. Soc. 56 (2019), 1569–1575
- GUNAWAN, H.—KIKIANTY, E.—SCHWANKE, C.: Discrete Morrey spaces and their inclusion properties,Math. Nachr. 291 (2018), 1283–1296.
- GUNAWAN, H.—SCHWANKE, C.: The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math. 16 (2019), paper. no. 24, 12 pp.
- GUZMÁN-PARTIDA, M.: Boundedness and compactness of some operators on discrete Morrey spaces, Comment. Math. Univ. Carolin. 62 (2021), 151–158.
- GUZMÁN-PARTIDA, M.—SAN MART´IN, L.—VILLEGAS-ACUÑA, A.: Vainikko operator on discrete Morrey spaces, Rev. Colombiana Mat. 57 (2023), no. 2, 179–191.
- HAROSKE, D.—SKRZYPCZAK, L.: Morrey sequence spaces: Pitt’s theorem and compact embeddings, Constr. Approx. 51 (2020), no. 3, 505–535.
- HAROSKE, D.—SKRZYPCZAK, L.: Nuclear embeddings of Morrey sequence spaces and smoothness Morrey spaces, Bull. Malays. Math. Sci. Soc. 47 (2024), paper no. 111, 34 pp.
- HATANO, N.—NOGAYAMA, T.—SAWANO, Y.—HAKIM, D.: Bourgain-Morrey spaces and their applications to boundedness of operators, J. Funct. Anal. 284 (2023), paper no. 109720; https://doi.org/10.1016/j.jfa.2022.109720.
- KIKIANTY, E.—SCHWANKE, C.: Discrete Morrey spaces are closed subspaces of their continuous counterparts, Function Spaces XII, Banach Center Publ. 119 (2019), 223–231.
- MASAKI, S.—SEGATA, J.: Existence of a minimal non-scatering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. PoincaréAnal. Non Linéaire 35 (2018), no. 2, 283–326; DOI 10.1016/J.ANIHPC.2017.04.003