Have a personal or library account? Click to login
Weyl’s Classification of Singular Impulsive q-Sturm-Liouville Equations Cover

Weyl’s Classification of Singular Impulsive q-Sturm-Liouville Equations

Open Access
|Dec 2025

References

  1. ANNABY, M. H.—MANSOUR Z. S.: Basic Sturm-Liouville problems, J. Phys. A 38 (2005), no. 17, 3775–3797.
  2. ANNABY, M. H.—MANSOUR Z. S.—SOLIMAN I. A.: q-Titchmarsh-Weyl theory: series expansion, Nagoya Math. J. 205 (2012), 67–118.
  3. AYDEMIR, K.—OLĞAR, H.—MUKHTAROV, O.: The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem. Turkish J. Math. Comput. Sci. 11 (2019), no. 2, 97–100.
  4. AYDEMIR, K.—OLĞAR, H.—MUKHTAROV, O. SH.—MUHTAROV, F.: Differential operator equations with interface conditions in modified direct sum spaces, Filomat 32 (2018), no. 3, 921–931.
  5. AYGAR, Y.—BAIRAMOV, E.: Scattering theory of impulsive sturm-liouville equation in quantum calculus. Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 3247–3259.
  6. BOHNER, M.—CEBESOY, S.: Spectral analysis of an impulsive quantum difference operato. Mathematical Methods in the Applied Sciences, 42 (2019), no. 16, 5331–5339.
  7. ÇETINKAYA, F. A.: A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditions, Miskolc Mathematical Notes 20 (2019), no. 2, 795–806.
  8. HAHN, W.: Beitr¨age zur theorie der heineschen reihen. die 24 integrale der hypergeometrischen q-differenzengleichung. das q-analogon der laplace-transformation. Mathematische Nachrichten 2 (1949), no. 6, 340–379.
  9. KAC, V. G.—CHEUNG P.: Quantum Calculus, Vol. 113. Springer-Verlag, Berlin, 2002.
  10. KARAHAN, D.: . On a q-analogue of the Sturm-Liouville operator with discontinuity conditions, Bulletin of Samara State Technical University, Ser. Phys. Math. Sci. Vol. 26 (2022), no. 3, pp. 407–418,
  11. KARAHAN, D.—MAMEDOV, K. R.: On a q-boundary value problem with discontinuity conditions, Bulletin of the South Ural State University, Ser. Mathematics, Mechanics, Physics, Vol. 13 (2021), no. (4) pp. 5–12, DOI:10.14529/mmph210401
  12. PALAMUT KOS¸AR, N.: The Parseval identity for q-Sturm-Liouville problems with transmission conditions, Adv. Difference Equ. 2021 (2021), Paper no. 251, pp. 12.
  13. SARGSJAN, I. S. ET AL.: Sturm-Liouville and Dirac Operators. Vol. 59, Springer Science & Business Media, Dordrecht, 2012.
  14. TITCHMARSH, E. C.—WEISS, G.: . Eigenfunction expansions associated with second--order differential equations, Part1. Physics Today, 15 (1962) no. 8, p. 52; https://doi.org/10.1063/1.3058324
  15. WEYL, H.:Über gewöhnliche differentialgleichungen mit singularit¨aten und die zugehörigen entwicklungen willkürlicher funktionen, Math. Annal. textbf68 (1910), no. 2, 220–269.
DOI: https://doi.org/10.2478/tmmp-2025-0007 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 79 - 90
Submitted on: Jul 13, 2023
Accepted on: Apr 5, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Bilender P. Allahverdiev, Hüseyin Tuna, Hamlet A. Isayev, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.