References
- D-Wave System Documentation. Available at: https://docs.dwavesys.com/docs/latest/index.html, access: 2022-06-10.
- BEAULIEU, R.—SHORS, D.—SMITH, J.—TREATMAN-CLARK, S.—WEEKS, B.— WINGERS, L.: The SIMON and SPECK families of lightweight block ciphers, Cryptology eprint archive (2013).
- BORLE, A.—LOMONACO, S. J.: Analyzing the quantum annealing approach for solving linear least squares problems.In: International Workshop on Algorithms and Computation, Lecture Notes in Comput. Sci., Vol. 11355, Springer, Cham, 2019, pp. 289–301.
- BUREK, E.—WROŃSKI, M.: Quantum Annealing and Algebraic Attack on Speck Cipher. In:Computational Science — ICCS 2022 (D.Groen,C.de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Dongarra, P. M. A. Sloot, eds.), Springer International Publishing. Cham. 2022, pp. 143–149,
- BUREK, E.—WROŃSKI, M.—MAŃK, K.—MISZTAL, M.: Algebraic attacks on block ciphers using quantum annealing, IEEE Transactions on Emerging Topics in Computing 10 (2022), 678–689.
- CHEN, H.—WANG, X.: Improved linear Hull attack on round-reduced Simon with dynamic key-guessing techniques.In: International Conference on Fast Software Encryption, Springer, Cham, 2016, pp. 428–449. file:///C:/Users/ivana/Downloads/978-3-662-52993-5.pdf
- CHU, Z.—CHEN, H.—WANG, X.—DONG, X.—LI, L.: Improved integral attacks on SIMON32 and SIMON48 with dynamic key-guessing techniques, Security and Communication Networks 2018, no. 1, (2018). https://doi.org/10.1155/2018/5160237
- JIANG, S.—BRITT, K. A.—MCCASKEY, A. J.—HUMBLE, T. S.—KAIS, S.: Quantum annealing for prime factorization, Scientific reports 8 (2018), 1–9.
- MUKHERJEE, S.—CHAKRABARTI, B. K.: Multivariable optimization: Quantum annealing and computation, The European Physical Journal Special Topics 224 (2015), 17–24.
- RADDUM, H.: Algebraic analysis of the simon block cipher family. In: Progress in Cryptology–LATINCRYPT 2015: 4th International Conference on Conference on Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings 4., Springer International Publishing, 2015, pp. 157–169.
- ROSENBERG, I. G.: Reduction of bivalent maximization to the quadratic case. Cahiers CentreÉtudes Rech. Opér. 17 (1975), 71–74.
- SHOR, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,(Santa Fe, NM, 1994), IEEE Comput. Soc. Press, Los Alamitos, CA, 1994. pp. 124–134.
- WRONSKI, M.: Solving discrete logarithm problem over prime fields using quantum annealing and n^32 logical qubits, IACR Cryptol. ePrint Arch. 2021 (2021), Paper no. 2021/527. https://eprint.iacr.org/2021/527