Have a personal or library account? Click to login
On Hilbert Ideal Convergent Sequence Spaces in Neutrosophic Normed Spaces Cover

On Hilbert Ideal Convergent Sequence Spaces in Neutrosophic Normed Spaces

Open Access
|Jun 2025

References

  1. ATANASSOV, K. T.: Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96.
  2. BERA, T.—MAHAPATRA, N. K.: Neutrosophic soft linear spaces, Fuzzy Information and Engineering 9 (2017), 299–324.
  3. BERA, T.—MAHAPATRA, N. K.: Neutrosophic soft normed linear spaces, Neutrosohic Sets and Systems 23 (2018), 52–71.
  4. FAST, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
  5. FRIDY, J. A.: On statistical convergence,Analysis 5 (1985), 301–313.
  6. HARDY, G. H.—LITTLEWOOD, J. E.—POLYA, G.: Inequalities, Cambridge University Press, Cambridge, 1934.
  7. KARAKUS, S.: Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11–23.
  8. [8] KHAN, V. A.—ARSHAD. M.: Application of neutrosophic normed spaces to analyze the convergence of sequences involving neutrosophic operators, Mathematical Foundations of Computing. 2025 Mar 14: doi:10.3934/mfc.2025010.
  9. KHAN, V. A.—ARSHAD, M.—KHAN, M. D.: Some results of neutrosophic normed space VIA Tribonacci convergent sequence spaces, J. Inequal. Appl. 42 (2022), 1–27.
  10. Khan, V. A.—Arshad, M. On neutrosophic normed spaces of I-convergence diference sequences defned by modulus function, Neutrosophic Sets and Systems 73 (2024), no. 1, art. no. 18.
  11. KHAN, V. A.—KHAN, M. D.—ARSHAD, M.—ET, M.: On some basic character of differentiation in neutrosophic normed spaces, Filomat 39 (2025), no. 2, 512–532. https://doi.org/10.2298/FIL2502515K
  12. KIRIŞÇI, M.— ŞIMŞEK, N.: Neutrosophic normed spaces and statistical convergence, J.Anal. 28 (2020), no. 4, 1059–1073.
  13. KIŞI,Ö.: Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. & Fuzzy Systems, 41 (2021), no. 2, 2581–2590.
  14. KOSTYRKO, P.—MAČAJ, M.—ŠALÁT, T.: Statistical convergence and I-convergence, Real Anal. Exchange 26, 1999.
  15. MENGER, K.: Statistical metrics, Proc. Natl. Acad. Sci. USA 28 (1942), 535–537.
  16. PARK, J. H.: Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), 1039–1046.
  17. SMARANDACHE, F.: Neutrosophic set - a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005), no. 3, 287–297.
  18. SAADATI, R.—PARK, J. H.: On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), 331–344.
  19. STEINHAUS, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. Vol. 2, (1951) pp. 73–74.
  20. ZADEH, L. A.: Fuzzy sets,Inform. Control 8 (1965), no. 3, 338–353.
DOI: https://doi.org/10.2478/tmmp-2025-0005 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 29 - 46
Submitted on: Nov 4, 2024
Accepted on: Feb 8, 2025
Published on: Jun 24, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Vakeel A. Khan, Ayhan Esi, Mohamed Faisal, Mohammad Arshad, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.