Have a personal or library account? Click to login
New Fixed Point Theorem on Extended b-Metric Space Using a Class of Contraction Mappings Cover

New Fixed Point Theorem on Extended b-Metric Space Using a Class of Contraction Mappings

Open Access
|Jun 2025

References

  1. ALQAHTANI, B.—FULGA, A.—KARAPINAR, E.: Common fixed point results on an extended b-metric space, J. Inequal. Appl. (2018), Paper no. 158, 15 pp. https://doi.org/$10.1186/s13660-018-1745-4$.
  2. ALQAHTANI, B.—FULGA, A.—KARAPINAR, E.: Non-unique fixed point results in extended b-metric space,Mathematics 6 (2018), Paper no. 68, 11 pp. https://doi.org/10.3390/math6050068.
  3. AGRAWAL, S.—QURESHI, K.—NEMA, J.: A fixed point theorem for b-metric space, Int. J. Pure Appl. Math. Sci. 9 (2016), 45–50.
  4. BANACH, S.: Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund. Math. 3 (1922), 133–181.
  5. BAKHTIN, I. A.: The contraction mapping principle in almost metric spaces, Funct. Ana. Gos. Ped. Inst. Ul’yanowsk, 30 (1989), 26–37. (In Russian)
  6. BERINDE, V.—PAČURAR, M.: Fixed point theorems for Kannan type mappings with applications to split feasibility and variational inequality problems, arXiv:1909.02379 [math.FA] (2019). https://doi.org/10.48550/arXiv.1909.02379
  7. BIANCHINI, RM. T.: Su un problema di S. Reich riguardonte la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103–108.
  8. BHATTACHARJEE, K.—LAHA, A. K.—DAS, R.: Fixed point theorems on complete b-metric space by using Rus contraction mapping, Tatra Mt. Math. Publ. (2024), DOI:10.2478/tmmp-2024-0010.
  9. BOTA, M.—MOLNAR, A.—VARGA, C.: On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 2, 21–28.
  10. BORICEANU, M.: Fixed point theory for multivalued generalized contraction on a set with two b-metric, Stud. Univ. Babes-Bolyai Math. 54 (2009), no. 3, 1–14.
  11. CZERWIK, S.: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), no. 1, 5–11.
  12. HUSSAIN, A.—KANWAL, T.: Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 481–490.
  13. HUANG, H.—SINGH, Y. M.—KHAN, M. S.—RADENOVIČ, S.: Rational type contractions in extended b-metric spaces, Symmetry, 13, (2021), no. 4, paper no. 614. https://doi.org/10.3390/sym13040614
  14. KANNAN, R.: Some results on fixed points—II, Amer. Math. Monthly 76 (1969), 405–408.
  15. KAMRAN, T.—SAMREEN, M.—UL AIN, Q.: A generalization of b-metric space and some fixed point theorems,Mathematics 5 (2017), no. 2, Paper no. 19, 7 pp. https://doi.org/10.3390/math5020019.
  16. KIR, M.— KIZILTUNE, H.: On some well-known fixed point theorems in b-metric space, Turkish J. Anal Number Theory, 1 (2013), no. 1, 13–16.
  17. NAZAM, M.—ARSHAD, M.: Some fixed point results in ordered dualistic partial metric spaces, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, Part B, 498–509.
  18. RHOADES, B. E.: A comparison of various definitions of contractive mappings,Trans. Amer. Math. Soc. 226 (1977), 257–290.
DOI: https://doi.org/10.2478/tmmp-2025-0003 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 14
Submitted on: Apr 27, 2024
Accepted on: Oct 11, 2024
Published on: Jun 24, 2025
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Krishna Bhattacharjee, Rakhal Das, Ajoy Kanti Das, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.