Have a personal or library account? Click to login
Graded Classical Weakly Prime Submodules Over Non-Commutative Graded Rings Cover

Graded Classical Weakly Prime Submodules Over Non-Commutative Graded Rings

Open Access
|Nov 2024

References

  1. ABU-DAWWAS, R.—AL-ZOUBI, K.: On Graded weakly classical prime submodules, Iran. J. Math. Sci. Inform. 12 (2017), no. 1, 153–161.
  2. ABU-DAWWAS, R.—BATAINEH, M.—AL-MUANGER, M.: Graded prime submodules over non-commutative rings, Vietnam J. Math. 46 (2018), no. 3, 681–692.
  3. ALSHEHRY, A. S.—ABU-DAWWAS, R.: Graded weakly prime ideals of non-commutative rings, Comm. Algebra 49 (2021), no. 11, 4712–4723.
  4. ALSHEHRY, A. S.—HABEB, J. M.—ABU-DAWWAS, R.—ALRAWABDEH, A.: Graded weakly 2-absorbing ideals over non-commutative graded rings, Symmetry 14 (2022), no. 7, Article no. 1472, https://doi.org/10.3390/sym14071472.
  5. ATANI, S. E.: On graded weakly prime ideals,Turkish J. Math. 30 (2006), 351–358.
  6. BATAINEH, M.—ABU-DAWWAS, R.—SHTAYAT, J.: Almost graded multiplication and almost graded comultiplication modules, Demonstratio Math. 53 (2020), 325–331.
  7. ESCORIZA, J.—TORRECILLAS, B.: Multiplication objects in commutative Grothendieck category, Comm. Algebra 26 (1998), no. 6, 1867–1883.
  8. FARZALIPOUR, F.—GHIASVAND, P.: On the union of graded prime submodules, Thai J. Math. 9 (2011), no. 1, 49–55.
  9. HABEB, J. M.: A note on zero commutative and duo rings, Math. J. Okayama Univ. 32, (1990), 73—76.
  10. HAZRAT, R.: Graded rings and graded Grothendieck groups. Cambridge University press, Cambridge 2016.
  11. JAMALI, M.—NEZHAD, R. J.: On classical weakly prime submodules,Facta Universitatis. Series: Mathematics and Informatics 37 (2022), no. 1, pp. 17–30.
  12. KHAKSARI, K.—JAHROMI, F. R.: Multiplication graded modules, Int.J.Algebra 7 (2013), no. 1, 17–24.
  13. MARKS, G.: Duorings andOre extensions,J.Algebra 280 (2004), 463–471.
  14. NASTASESCU, C.—OYSTAEYEN, F.: Methods of graded rings. In: Lecture Notes in Mathematics, Vol. 1836, Springer-Verlag, Berlin, 2004.
  15. REFAI, M.—ABU-DAWWAS, R.: On generalizations of graded second submodules, Proyecciones 39 (2020), no. 6, pp. 1537–1554.
  16. QUARTARARO, P.—BUTTS, H. S.: Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91–96.
  17. REFAI, M., HAILAT, M. AND OBIEDAT, S.: Graded radicals and graded prime spectra, Far East J. Math. Sci. (2000), 59–73.
  18. SABER, H.—ALRAQAD, T.—ABU-DAWWAS, R.: On graded s-prime submodules, AIMS Math. 6 (2021), no. 3, 2510–2524. https://mathscinet.ams.org/mathscinet/relay-station?mr=4199177
DOI: https://doi.org/10.2478/tmmp-2024-0023 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 85 - 104
Submitted on: Jun 18, 2023
Accepted on: Oct 3, 2024
Published on: Nov 27, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Jebrel M. Habeb, Rashid Abu-Dawwas, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.